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The Sobolev space Hs(Td)

• Let Td = (R/(2πZ))d be a torus of dimension d.

• If f : Td → C is a C∞ function then for every x ∈ Td,

f(x) =
∑
n∈Zd

f̂(n) ein·x,

where

f̂(n) = (2π)−d
∫
Td
f(x)e−in·xdx

then

‖f‖2
Hs(Td) =

∑
n∈Zd
〈n〉2s|f̂(n)|2 ,

where

〈n〉2s = (1 + n2
1 + n2

2 + · · ·+ n2
d)s.

• One can define the Sobolev space Hs(Td) as the closure of C∞(Td)
with respect to the Hs norm.
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The Sobolev space Hs(Td) (sequel)

• The norm Hs is induced from a natural scalar product

(f, g)s =
∑
n∈Zd
〈n〉2sf̂(n)ĝ(n)

which makes Hs(Td) a Hilbert space.

• We have that

(f, g)s = (2π)−d
(
(1−∆)s(f), g

)
,

where (·, ·) stands for the L2(Td) inner product and

∆ =
d∑

j=1

∂2

∂x2
j

is the Laplace operator.
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The gaussian measure µs

• We wish to have a measure formally defined as

Z−1 e−‖u‖
2
Hs du

as a measure on a suitable functional space.

• Formally

Z−1 e−‖u‖
2
Hs du = Z−1 exp

(
−

∑
n∈Zd
〈n〉2s|û(n)|2

) ∏
n∈Zd

d û(n)

and the last expression makes think about the well defined object∏
n∈Z

Z−1
n exp

(
− 〈n〉2s|û(n)|2

)
d û(n),

where we formally wrote

Z−1 =
∏
n∈Z

Zn
−1 .
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The gaussian measure µs (sequel)

• Therefore, we may wish to define the measure µs, formally given by

Z−1 e−‖u‖
2
Hs du

as the image measure by the map

ω 7−→
∑
n∈Zd

ein·x
gn(ω)

〈n〉s
,

where (gn(ω))n∈Zd are i.i.d. complex gaussian random variables with

mean 0 and variances 1, on a probability space (Ω,F , p).

• Question : µs is a measure on which space ?
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The gaussian measure µs (sequel)

• We can write for N < M∥∥∥∥ ∑
N≤|n|≤M

ein·x
gn(ω)

〈n〉s

∥∥∥∥2

L2(Ω;Hσ(Td))
'

∑
N≤|n|≤M

〈n〉2σ

〈n〉2s

which tends to zero as N →∞, provided

σ < s−
d

2
.

• Therefore ∑
n∈Zd

ein·x
gn(ω)

〈n〉s
∈ L2(Ω;Hσ(Td)) .
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The gaussian measure µs (sequel)

• We conclude that the map

ω 7−→
∑
n∈Zd

ein·x
gn(ω)

〈n〉s

defines a probability measure on Hσ(Td), σ < s − d
2. In addition, we

will see later that

µs(H
s−d2(Td)) = 0 .

• In particular

µs(H
s(Td)) = 0 .

• The triple (Hσ(Td), Hs(Td), µs) defines an abstract Wiener space.

• In this constriction Hs(Td) is canonical (called the Cameron-Martin

space) but Hσ(Td) is not, it may be replaced for instance by Wσ,∞(Td).
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A first property of µs

• Recall that µs is a probability measure on Hσ(Td), σ < s− d
2.

• Let l ∈ (Hσ(Td))?, i.e. l : Hσ(Td)→ C, linear and continuous.

• Let µs ◦ l−1 be the transport on C by l of the measure µs. It results

directly from the definition that µs◦l−1 is a centered complex gaussian

with a variance depending on l.

• More precisely if l is identified with v ∈ H−σ(Td) (i.e. l(x) = (x, v))

then µs ◦ l−1 is the law of the random variable (with values in C)

∑
n∈Zd

gn(ω)v̂(n)

〈n〉s

which is a centered complex gaussian with variance

∑
n∈Zd

|v̂(n)|2

〈n〉2s
=

∑
n∈Zd

|v̂(n)|2〈n〉−2σ

〈n〉2s−2σ
<∞

because σ < s− d
2 and v ∈ H−σ(Td).
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Conclusion

• Therefore µs is a gaussian measure on Hσ(Td), σ < s− d
2 according

to the text books definition.
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The covariance operator associated with µs

• We define a bilinear map T on (Hσ(Td))? × (Hσ(Td))? by

T (l1, l2) = Eµs(l1(x)l2(x)) =
∫
Hσ(Td)

l1(x)l2(x)µs(dx) .

If we identify l1, l2 with v1, v2 ∈ H−σ(Td) respectively then

T (l1, l2) = E
( ∑
n∈Zd

gn(ω)v̂1(n)

〈n〉s
,
∑
n∈Zd

gn(ω)v̂2(n)

〈n〉s
)

= (2π)−d((1−∆)−s(v1), v2).

• In this sense, we may say that (2π)−d(1 −∆)−s is the ”covariance
matrix” of µs.

• Recall that formally

µs = Z−1 e−‖u‖
2
Hs du

and

‖u‖2Hs = (2π)−d
(
(1−∆)s(u), u

)
.
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A finer almost property with respect to µs

• Let 〈Dx〉σ be a Fourier multiplier defined by

〈Dx〉σf(x) =
∑
n∈Zd

〈n〉σf̂(n) ein·x,

corresponding to a fractional derivation of order σ. Set

ϕ(ω, x) =
∑
n∈Zd

ein·x
gn(ω)

〈n〉s

which describes the support of µs. Then we have

Proposition 1

Let σ < s− d
2. Then

〈Dx〉σ(ϕ(ω, x)) ∈ C(Td)

almost surely. In other words 〈Dx〉σ(u) ∈ C(Td), µs almost surely.

• Remark. A priori, we only know that 〈Dx〉σ(ϕ(ω, x)) ∈ L2(Td).
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Proof of the proposition

• For every x, we have that gn(ω) ein·x is again a standard complex

gaussian (invariance under rotations of gaussian vectors).

• Next, using the independence of gn we get that for a fixed x ∈ Td,

〈Dx〉σ(ϕ(ω, x))

is a standard complex gaussian with variance

∑
n∈Zd

〈n〉2σ

〈n〉2s
<∞.

• Consequently ∀ p < ∞, ‖〈Dx〉σ(ϕ(ω, x))‖Lp(Ω) is finite and indepen-

dent of x. Consequently

〈Dx〉σ(ϕ(ω, x)) ∈ Lp(Ω× Td)

Thanks Fubini 〈Dx〉σ(ϕ(ω, x)) ∈ Lp(Td) almost surely for all p <∞.

•We finally use the Sobolev embedding (the restriction on σ is open).
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Optimality of the restriction σ < s− d
2.

Proposition 2

u /∈ Hs−d2(Td), µs almost surely.

Proof. Set again

ϕ(ω, x) =
∑
n∈Zd

ein·x
gn(ω)

〈n〉s

We need to study the probability of the event A defined by

A = {ω : ‖ϕ(ω, ·)‖
H
s−d2

<∞}.

The event A belongs to the asymptotic σ-algebra obtained from

the independent σ-algebras generated from gn because the property

‖u‖
H
s−d2

< ∞ depends only on (1 − ΠN)u for every N ∈ N, where ΠN

is the Dirichlet projector.

12



Sequel of the proof

• Therefore by the Kolmogorov zero-one law, we have that

p(A) ∈ {0,1}.

• We suppose that the last probability is 1 and we look for a contra-

diction. Set σ = s− d2. If p(A) = 1 then by the dominated convergence

lim
N→∞

∫
Ω
e−‖πNϕ(ω,·)‖2Hσ dp(ω) =

∫
Ω
e−‖ϕ(ω,·)‖2Hσ dp(ω) > 0 . (1)

• We will show that

lim
N→∞

∫
Ω
e−‖πNϕ(ω,·)‖2Hσ dp(ω) = 0

which will be in a contradiction with (1).

• Using the independence, we can write∫
Ω
e−‖πNϕ(ω,·)‖2Hσ dp(ω) =

∏
|n|≤N

∫
R2
e−〈n〉

−2s(x2+y2)〈n〉2σe−(x2+y2)dxdy

π
.

Recall that 2σ − 2s = −d.
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Sequel of the proof

• Now, if we set

θ :=
∫
x2+y2≤1

e−(x2+y2)dxdy

π
∈ (0,1)

and we have∫
R2
e−(x2+y2)〈n〉−de−(x2+y2)dxdy

π

≤ θ +
∫
x2+y2>1

e−〈n〉
−d
e−(x2+y2)dxdy

π

≤ θ + e−〈n〉
−d

(1− θ) = 1− (1− θ)(1− e−〈n〉
−d

) .

• Now, we observe that

lim
N→∞

∑
|n|≤N

(1− e−〈n〉
−d

) =∞

because

lim
N→∞

∑
|n|≤N

〈n〉−d =∞.

This completes the proof.
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Almost sure products with respect to µs

• When solving nonlinear PDE we need to give sense of products of

low regularity functions and also distributions.

• When s > d
2 we can readily define µs almost surely the operation

(u1, u2) 7−→ u1(x)× u2(x), x ∈ Td

because µs(C(Td)) = 1, thanks to the previous proposition.

• The situation is radically different for s ≤ d
2 because in this case the

support of µs is not of classical functions and we deal with a random

distributions (or random fields).
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Almost sure products with respect to µs for s < d
2

Let s < d
2. The random distribution

ϕ(ω, x) =
∑
n∈Zd

gn(ω)

〈n〉s
ein·x,

d

4
< s <

d

2

belongs only to a Sobolev space of negative regularity and therefore

it is hard to define an object like |ϕ(ω, x)|2. For example, thanks to

Parseval, the zero Fourier coefficient of |ϕ(ω, x)|2 should be

∑
n∈Zd

|gn(ω)|2

〈n〉2s

which is a.s. divergent. However, it turns out that the zero Fourier

coefficient is the only obstruction and it is possible, after a renormali-

sation, to define |ϕ(ω, x)|2 and even to compute its Sobolev regularity.
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Almost sure products with respect to µs for s < d
2 (sequel)

• Fix σ < s− d
2 (close to s− d

2). Consider the partial sums

ϕN(ω, x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x ∈ C∞(Td)

and write

|ϕN(ω, x)|2 =
∑
|n|≤N

|gn(ω)|2

〈n〉2s
+

∑
n1 6=n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉s〈n2〉s
ei(n1−n2)·x.

• The first term (the zero Fourier coefficient) contains all the singu-

larity while the second has an a.s. limit in H2σ(Td).
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Almost sure products with respect to µs for s < d
2 (sequel)

• Consequently, we set

cN := E
( ∑
|n|≤N

|gn(ω)|2

〈n〉2s

)
= E(|ϕN(ω, x)|2) =

∑
|n|≤N

1

〈n〉2s
∼ Nd−2s ,

and we define the renormalised partial sums

|ϕN(ω, x)|2−cN =
∑
|n|≤N

|gn(ω)|2 − 1

〈n〉2s
+

∑
n1 6=n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉s〈n2〉s
ei(n1−n2)·x.

• Thanks to the independence of gn we have

E
(∣∣∣∣ ∑
|n|≤N

|gn(ω)|2 − 1

〈n〉2s

∣∣∣∣2) =
∑
|n|≤N

4

〈n〉4s
,

which has a limit as N →∞ when s > d/4.
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Almost sure products with respect to µs for s < d
2 (sequel)

• Another use of the independence yields that

E
(∥∥∥∥ ∑

n1 6=n2
|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉s〈n2〉s
ei(n1−n2)·x

∥∥∥∥2

H2σ

)

is equal to∥∥∥∥ ∑
n1 6=n2

|n1|,|n2|≤N

〈n1 − n2〉σ
gn1(ω)gn2(ω)

〈n1〉s〈n2〉s
ei(n1−n2)·x

∥∥∥∥
L2(Ω×T d)

which is bounded by

C
∑
n1,n2

〈n1 − n2〉4σ

〈n1〉2s〈n2〉2s
.

The last sum converges as far as −4σ + 4s > 2d, which is equivalent

to our assumption σ < s− d
2. Hence we proved that :
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Proposition 3

The sequence
(
|ϕN(ω, x)|2 − cN

)
N≥1

has a limit in L2(Ω;H2σ(T)).

This limit is by definition the renormalisation of |ϕ(ω, x)|2, i.e. after

a renormalisation we can give a sense of |u|2, µs almost surely.
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Remarks

• Using more involved arguments, we can also show the almost sure
convergence in the Sobolev space H2σ(Td) of the sequence(

|ϕN(ω, x)|2 − cN
)
N≥1

.

• Since σ < 0 the norm in H2σ(Td) is weaker than in Hσ(Td) (where
ϕN(ω, x) is defined).

• Informally : the square of the modulus of an element of Hσ is in
H2σ, after a renormalisation.

• This is a remarkable probabilistic phenomenon, in the heart of the
study of evolution partial differential equations in the presence of
randomness in Sobolev spaces of negative indexes.

• If s = 1 then the restriction

s >
d

4
is OK for d = 2,3 but not for d ≥ 4. This is related to the existence
of the Φ4

d theories for d = 1,2,3 and the triviality for d ≥ 4.

21



Remarks (sequel)

• We can replace the gaussians with much more general random

variables.

• We can also replace the sequence

1

〈n〉s

with a more general sequence (cn), i.e. we can consider∑
n∈Zd

cn gn(ω) ein·x

instead of ∑
n∈Zd

gn(ω)

〈n〉s
ein·x

but I am not aware of the optimal regularity of the renormalised square

in function of the sequence (cn).
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Control on the µs a.s. divergence of the Hσ, σ < s− d
2 norm

• • Recall that we have shown that

‖u‖
H
s−d2

=∞, µs almost surely.

However, we have that

‖ΠNϕ(ω, ·)‖2Hσ =
∑
|n|≤N

|gn(ω)|2

〈n〉2s−2σ

and therefore for σ > s− d
2,

E
(
‖ΠNϕ(ω, ·)‖2Hσ

)
=

∑
|n|≤N

1

〈n〉2s−2σ
∼ Nd−2s+2σ

• As in the previous analysis, we can show that

‖ΠNϕ(ω, ·)‖2Hσ − E
(
‖ΠNϕ(ω, ·)‖2Hσ

)
has a limit as N →∞, provided 4s− 4σ > d, i.e. σ < s− d

4.
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Conclusion

• Therefore for σ between s− d
2 and s− d

4 we control the divergence

of the Hσ norm µs almost surely.

• This fact may play an important role in the analysis of PDE’s with

data distributed according to µs (quasi-invariant measures for the

nonlinear wave equation and invariant measures for the Benjamin-

Ono equation).
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The Cameron-Martin theorem

• Question : How behaves µs under transformations ?

Theorem 4 (Cameron-Martin 1944)

Let f ∈ Hσ(Td), σ < s − d
2 and let µf be the image of µs under the

map from Hσ(Td) to Hσ(Td) defined by

u 7−→ f + u .

Then µf is absolutely continuous with respect to µs if and only if

f ∈ Hs(Td).

• Recalling that formally

dµs(u) = Z−1 e−‖u‖
2
Hs du

we may expect that

dµf(u)

dµs(u)
= e−‖f‖

2
Hs−2(u,f)s ,

where (·, ·)s stands for the Hs scalar product.
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Proof of the Cameron-Martin theorem for µs

• Let f ∈ Hs(Td). Since we expect that the Radon-Nykodim derivative
is exp

(
− ‖f‖2Hs − 2(u, f)s

)
the first issue is to show that (u, f)s <∞,

µs almost surely which is equivalent to∑
n∈Zd
〈n〉s gn(ω) f̂(n) <∞, a.s.

which directly results directly from the independence and f ∈ Hs(Td).
• We however need also to show that exp

(
−2(u, f)s

)
is µs integrable.

• For that purpose we write for λ > 0,

µs(u : |(u, f)s| > λ) = p
(
ω :

∣∣∣( ∑
n∈Zd

gn(ω)

〈n〉s
ein·x , f

)
s

∣∣∣ > λ
)

= p
(
ω :

∣∣∣ ∑
n∈Zd
〈n〉s gn(ω) f̂(n)

∣∣∣ > λ
)
≤ Ce−Cλ

2

because∑
n∈Zd
〈n〉s gn(ω) f̂(n) ∈ NC(0, σ2), σ2 =

∑
n∈Zd
〈n〉2s|f̂(n)|2 <∞ .
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Proof of the Cameron-Martin theorem for µs (sequel)

• Let now f /∈ Hs(Td). Then there is g ∈ Hs such that (f, g)s = ∞.

Consider the set

A = {u ∈ Hσ : (g, u)s <∞}.

We already checked that µs(A) = 1 (replace f by g in the discussion

of the previous slide). The image of A under our shift is the set B

defined by

B = {u+ f, u ∈ A}.

Clearly A ∩ B = ∅ and therefore µs(B) = 0. Thus we found a set of

measure 1 which is sent by the shift by f map to a set of measure 0.

This completes the proof.
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The Ramer theorem

• For σ < s− d
2, let us consider a diffeomorphism Φ on Hσ(Td) of the

form

Φ(u) = u+ F (u),

where F : Hσ(Td)→ Hs(Td). Suppose that for u ∈ Hσ(Td),

DF [u] : Hs(Td)→ Hs(Td)
is Hilbert-Schmidt.
Theorem 5 (Ramer 1974)

Under the above assumption µs is quasi-invariant under Φ.

The Ramer theorem applies to

F (u) = ε(1−∆)−d/2−δ(u2), δ > 0, |ε| � 1,

i.e. d-smoothing is needed.
• Unfortunately such a strong smoothing is not (directly) available if
Φ is the flow of a nonlinear PDE.
• The Ramer theorem is optimal in the class of general diffeomor-
phisms of the above form.
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How behaves µs under the flow of a Hamiltonian PDE ?
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The free Schrödinger evolution

• The linear Schrödinger equation reads

(i∂t + ∆)u = 0, u|t=0 = u0 . (2)

If u0 is given by

u0(x) =
∑
n∈Zd

cn e
in·x

then the solution of (2) is given by

u(t, x) =
∑
n∈Zd

cn e
−it|n|2 ein·x.

• We write

u(t, x) = eit∆(u0),

i.e. the map eit∆ generates the solutions of (2).
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Invariance of µs under the free Schrödinger evolution

Proposition 6

Let S(t) = eit∆ . Let µs(t) be the image of µs under the map from

Hσ(Td) to Hσ(Td) defined by u 7−→ S(t)(u) . Then µs(t) = µs.

Proof. We have that

S(t)
( ∑
n∈Zd

einx
gn(ω)

〈n〉s

)
=

∑
n∈Zd

einx
e−itn

2
gn(ω)

〈n〉s

which has the same distribution as∑
n∈Zd

einx
gn(ω)

〈n〉s

because e−itn
2
gn(ω) has the same distribution as gn(ω) (invariance of

complex gaussians by rotations). This completes the proof.
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A remark

• Even in 1d, for a fixed sequence (cn)n∈Z the free Schrödinger evo-

lution ∑
n∈Z

cn e
inx e−itn

2

may have a complicated behaviour depending on the nature of the

number t (leading to interesting number theory considerations) but

the statistical behaviour under µs is the same for each time t.
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Transport of µs under nonlinear transformations

Question : How behaves µs under the flow of the nonlinear Schrödinger
equation (NLS) ? Let us start by the dispersionless model :

Theorem 7 (Oh-Sosoe-Tz. (2017))

Let d = 1, s ≥ 1 be an integer and 0 < σ < s − 1/2. Let ρs(t)
be the image of µs under the map from Hσ(T) to Hσ(T) defined by
u0 7−→ u(t) , where u(t) solves

i∂tu = |u|2u, u|t=0 = u0 . (3)

Then for t 6= 0, the measure ρs(t) is not absolutely continuous with
respect to µs.

• The solution of (3) is given by

u(t, x) = u0(x) e−it|u0(x)|2 (4)

and the idea behind the proof is to show that a typical regularity prop-
erty of the data resulting from the iterated logarithm law associated
with µs is destroyed by the time oscillation in formula (4).
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Transport of µs under nonlinear transformations (sequel)

But we also have :

Theorem 8 (Deng-Sun-Tz. 2022)

Let s > 2 and 1 ≤ σ < s− 1. Let p ≥ 2 be an even integer. Let µs(t)

be the image of µs under the map from Hσ(T2) to Hσ(T2) defined by

u0 7−→ u(t) , where u(t) solves the 2d nonlinear Schrödinger equation

(i∂t + ∆)u = |u|pu, u|t=0 = u0 . (5)

Then µs(t) is absolutely continuous with respect to µs. In other words,

µs is quasi-invariant under the flow of (5). In particular for fixed t, x

the law of u(t, x) has a density with respect to the Lebesgue measure

on C.

Remark. We know that (5) is globally well-posed in Hσ(T2), σ ≥ 1,

thanks to the work by Bourgain (1992).
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Remarks

• Previously, we had similar results for NLS in 1d, for the nonlinear

wave equations in dimensions ≤ 3 (with energy sub-critical nonlinear-

ities), for the gKdV equation and for BBM type models.

• The first result for measures in negative Sobolev spaces is by Oh-

Seong in the context of 4NLS.

• The 3d NLS does not seem out of reach ...

• Depending on the equation, we have more or less informations on

the resulting Radon-Nykodim derivatives. The first result identify-

ing the Radon-Nykodim derivative as a suitable Lp(µs) function is by

Debussche-Tsutsumi.

• For s = 1, the quasi-invariance may be a consequence from the

invariance of the Gibbs measure. However, in many case the renor-

malizations change considerably the model and the result makes no

connection with the smooth solutions of the considered equation.
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A corollary (L1 stability for the corresponding Liouville equation)

Theorem 9

Let s > 2. Let f1, f2 ∈ L1(dµs) and let Φ(t) be the flow of

(i∂t + ∆)u = |u|2pu, u|t=0 = u0 ,

defined µs a.s. Then for every t ∈ R, the transports of the measures

f1(u)dµs(u), f2(u)dµs(u)

by Φ(t) are given by

F1(t, u)dµs(u), F2(t, u)dµs(u)

respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµs). Moreover

‖F1(t)− F2(t)‖L1(dµs)
= ‖f1 − f2‖L1(dµs)

.

• Local in time bounds for other distances are obtained in a recent

work by work by Forlano-Seong. There are many further things to be

understood.
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Methods

• Roughly speaking, presently, we have two different methods to prove
this kind of quasi-invariance results :
• Method 1 : Using the time oscillations (dispersive estimates).
• Method 2 : Using the random oscillations (in the spirit of the
analysis we did in the beginning of the lectures).
• In both methods, we do not study directly the evolution of the
gaussian measure µs but the evolution of ρs defined by

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where Rs(u) is a suitable correction and where χ is a continuous
function with a compact support and where H(u) is the Hamiltonian
of the equation under consideration (conserved by the flow). We
formally have

e−Rs(u)dµs(u) = Z−1e−Rs(u)e−‖u‖
2
Hsdu = Z−1e−Es(u)du ,

where

Es(u) = ‖u‖2Hs +Rs(u) .

37



Methods (sequel)

• The correction Rs(u) in the energy functional

Es(u) = ‖u‖2Hs +Rs(u)

is of fundamental importance and there are different intuitions behind

its construction : normal form reductions, traces of complete inte-

grability, modulated energies, ...

• Interestingly, in some cases the construction of Rs(u) requires renor-

malisation arguments.

• However, an important feature is that we do not renormalise the

equation which stays always the same. Instead, we consider renor-

malised functionals associated with the equation with data distributed

according to a gaussian field.
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On method 1

• Let Φ(t) be the flow of the PDE under consideration.

• Formally the transported measure is given by

Z−1χ(H(u)) e−Es(Φ(t)(u)) du =

Z−1χ(H(u)) e−Es(Φ(t)(u)) eEs(u)e−Es(u)du

which can be interpreted as the (relatively) well defined object

e
−
(
Es(Φ(t)(u))−Es(u)

)
χ(H(u))e−Rs(u)dµs(u) .

• Therefore we hope that the Radon-Nykodim derivative of the trans-

port of ρs is given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
• Problem : In Es(Φ(t)(u))−Es(u) both terms are strongly diverging

on the support of µs but the hope is to find some cancellations thanks

to PDE smoothing estimates.
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On method 1 (sequel)

• More precisely, one can write

Es(Φ(t)(u))− Es(u) =
∫ t

0

d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

dτ.

Set

Gs(τ) =
d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

.

We will be done, if we can prove that∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−d2−

,

for a suitable choice of Rs(u) and for a suitable number θ.

• If Es is a conserved quantity (Gibbs measures) then Gs = 0 and

one expects an invariant measure. However, this may not be true at

the level of the approximated finite dimensional models and a serious

difficulty may appear (cf. works by Nahmod-Oh-Rey Bellet-Staffilani,

Tz.-Visciglia, Genovese-Luca-Valeri, ...).
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On method 1 (sequel)

• If θ < 2 the Randon-Nykodim density is indeed given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
in the sense that it is the natural limit of the corresponding (perfectly

well defined) finite dimensional densities.

• If θ ≥ 2, we can define the Radon-Nykodim density of the transport

of

exp
(
− ‖u‖m

H
s−d2−

)
χ(H(u)) e−Rs(u)dµs(u),

where m� 1 (depending on θ).

• Remark. It would be interesting to replace∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−d2−

,

with more subtle estimates.
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On method 2

• Let A ⊂ Hσ(T) be a measurable set.

• Recall that

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where χ is a continuous function with a compact support and H(u)

is the Hamiltonian of the equation under consideration.

• Then
d

dt
ρs(Φ(t)(A))

∣∣∣∣
t=t̄

=
d

dt
ρs(Φ(t)(Φ(t̄)(A)))

∣∣∣∣
t=0

which is formally equal to∫
Φ(t̄)(A)

d

dt
Es(Φ(t)(A))

∣∣∣∣
t=0

dρs(u)

≤
∥∥∥∥ ddtEs(Φ(t)(A))

∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

(
ρs(Φ(t̄)(A))

)1−1
p
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On method 2 (sequel)

• We would be done if we show that∥∥∥∥ ddtEs(Φ(t)(A))
∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

≤ Cp, p� 1 . (6)

In the proof of the last inequality we only exploit the random oscilla-
tions of the initial data.
• Important observation : if we are only interested in the qualitative
statement of quasi-invariance then in (6) we can suppose that A in-
cluded in a bounded set of a Banach space H which is of full measure
such that the PDE under consideration is globally well posed in H
(existence, uniqueness and persistence of regularity).
• Let us formally show how we use (6) (similarly to the uniqueness
for 2d Euler) to get the quasi-invariance. Set

x(t) = ρs(Φ(t)(A)) .

Thanks to (6) we have

ẋ(t) ≤ Cp(x(t))
1−1

p
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On method 2 (sequel)

Therefore
d

dt

(
(x(t))

1
p

)
≤ C .

• An integration yields

(x(t))
1
p − (x(0))

1
p ≤ Ct

Therefore, if x(0) = 0 then

x(t) ≤ (Ct)p

which goes to zero as p→∞, provided Ct < 1.

• Since the constant C is uniform we can iterate the last argument

and achieve any time.

• The above argument may become rigorous if we use some approx-

imation arguments resulting from the Cauchy problem theory of the

equation under consideration.
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Final remarks

• Basically, it may look that Method 2 performs better for equations

with weaker dispersion.

• I do not see yet an efficient way to combine Method 1 and

Method 2 ...

• In the work on 2d NLS with Deng and Sun, we follow Method 2 with

several key novelties. One of them is that thanks to the structure of

the resonant set we can use a normal from reduction and then use the

time oscillations via the Strichartz estimates for the linear equation

(a similar idea was used in my work with Hani-Pausader-Visciglia on

solutions of NLS with growing higher Sobolev norms).

•We are not able so far to use the recent refined resolution ansatz (as

the random averaging operators) in the context of quasi-invariance of

gaussian measures. It would be very interesting to clarify whether it

may be possible. This is what I am presently trying to understand ...
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2D NLS analysis, the setup

• Write

v(t) = e−it∆u(t), v(t) =
∑
k

vk(t)eik·x.

• If u(t) solves i∂tu+ ∆u = |u|2u, then

∂tvk =
1

i

∑
k1−k2+k3=k

e−itΦ(~k)vk1
vk2

vk3
,

where

Φ(~k) := |k1|2 − |k2|2 + |k3|2 − |k|2 = 2(k1 − k2) · (k2 − k3).

• We have

1

2

d

dt
‖v(t)‖2Hs = −

1

4
Im

∑
k1−k2+k3−k4=0

k2 6=k1,k3

ψ2s(~k)e−itΦ(~k)vk1
vk2

vk3
vk4

,

ψ2s(~k) = |k1|2s − |k2|2s + |k3|2s − |k4|2s.
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• Set

N0,t(v) =
∑

k1−k2+k3−k4=0
Φ(~k)6=0

ψ2s(~k)
e−itΦ(~k)

−iΦ(~k)
vk1
vk2
vk3
vk4
,

R0,t(v) =
∑

k1−k2+k3−k4=0
Φ(~k)=0

ψ2s(~k)vk1
vk2
vk3
vk4

R1,1,t(v) = 2
∑

k1−k2+k3−k4=0
Φ(~k) 6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
p1−p2+p3=k1

e−itΦ(~p)vp1vp2vp3vk2
vk3
vk4
,

R1,2,t(v) = −2
∑

k1−k2+k3−k4=0
Φ(~k)6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
q1−q2+q3=k2

eitΦ(~q)vk1
vq1vq2vq3vk3

vk4
.

• Defining

Es,t(v) :=
1

2
‖v‖2

Hs +
1

4
ImN0,t(v)

we obtain that along the NLS flow, we have

d

dt
Es,t(v) :=

1

4
Im
[
R1,1,t(v) +R1,2,t(v)−R0,t(v)

]
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• Let us look at the simplest (resonant) term

R0,t(v) :=
∑

k1−k2+k3−k4=0
Φ(~k)=0

ψ2s(~k)vk1
vk2

vk3
vk4

.

• W.L.O.G., we assume that vkj = P̂Njv(kj) and N(1) ≥ N(2) ≥ N(3) ≥
N(4) are the rearrangement of N1, N2, N3, N4.

• We have |ψ2s(~k)| . N2s−2
(1) N2

(3) and therefore

|R0,t(v)| . N2s−2
(1) N2

(3)

∫ 2π

0

∫
T2
eit∆f1 · eit∆f2e

it∆f3 · eit∆f4dtdx,

where f̂j(kj) = |vkj |. The space-time integral can be treated using

the bilinear Strichartz estimate. Due to the unavoidable loss N0+
(3) ,

we have

|R0,t(v)| . ‖PN(1)
v‖Hs−1‖PN(2)

v‖Hs−1‖PN(3)
v‖H2+‖PN(4)

v‖L2.

• No matter how large s is, the above estimate is not enough for our

need, as v ∈ H(s−1)− almost surely. Nevertheless, we are ε-close to

what we expect (for s large).
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Exploiting the random oscillation

• By Method II, what we are allowed reduce the estimate to t = 0
and average on the support of the measure. So we have access to the
probability toolbox: Wiener chaos estimate: l−linear Gaussian sum:

Tl :=
∑

k1,··· ,kl
ck1,··· ,klgk1

(ω) · · · gkl(ω),

for any p ≥ 2, ‖Tl‖Lpω ≤ Cp
l
2‖Tl‖L2

ω
.

• The pairing contributions (k1 = k2, k3 = k4), (k1 = k4, k2 = k3)
in R0,t(v) disappear by taking the imaginary part, it is reduced to
estimate

p2
∥∥∥ ∑
k1−k2+k3−k4=0,

k2 6=k1,k3

Φ(~k)=0

ψ2s(~k)1|kj|∼Nj

gk1
(ω)gk2

(ω)gk3
(ω)gk4

(ω)

〈k1〉s〈k2〉s〈k3〉s〈k4〉s
∥∥∥
L2
ω

Consider the worst case, say N1 ∼ N2 � N3 + N4 = O(1), the
above quantity can be crudely bounded by p2N2s−2

(1) ·N−2s+1
(1) = p2N−1

(1).
By interpolating with the deterministic bound in the last slide, we
conclude that ‖ImR0,t(v)|t=0‖Lpω ≤ Cp.
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The key cancellation

• The treatment for N0,t(v) follows from the similar analysis +

resonance decomposition according to the value of Φ(~k).

• However, the estimate for the second generations R1,j,t(v), j =

1,2 requires another algebraic cancellation.

• The reason is that in the high-high-low-low-low-low regime, the

most problematic contribution is the paring of two dominant fre-

quencies living in different generations. These types of pairing

prevent us to gain from the Wiener chaos.
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The key cancellation (sequel)

• Written in formula, these two pairing configurations are:

S1,1,1(v) :=

4
∑

k1 6=k2

|vk2
|2

∑
|k3|+|k4�|k1|,|k2|
|p2|+|p3|�|k1|,|k2|
k3−k4=k2−k1
p2−p3=k2−k1

ψ2s(~k)

Φ(~k)
e−it(|k3|2−|k4|2+|p2|2−|p3|2)vk3

vk4
vp2vp3,

and

S1,1,2(v) :=

4
∑
k1,k3

|vk3
|2

∑
|k2|+|k4|�|k1|,|k3|
|p1|+|p3|�|k1|,|k3|
p1+p3=k1+k3
k2+k4=k1+k3

ψ2s(~k)

Φ(~k)
eit(|k2|2+|k4|2−|p1|2−|p3|2)vk2

vk4
vp1vp3.
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The key cancellation (sequel)

• To understand the hidden cancellation, for S1,1,1(v), one can think

about the sum is taken over |k3|, |k4|, |p2|, |p3| = O(1), then

ψ2s(~k)

Φ(~k)
≈
|k1|2s − |k2|2s

|k1|2 − |k2|2
,

then the second sum in the definition of S1,1,1 is completely decoupled

as | · · · |2 and we deduce that S1,1,1 is almost real.
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Thank you for your attention !
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