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T he microscopic model

e For N > 1, consider as a microscopic model the wave dynamics

87u + |Dz|?“u + N"NyV/(u) =0, (t,2) e RxTZ,a < 1,
where 8 > 0, |Dz|?* = (—A)® and

m .
T% = (R/27N)2, V(u) = Y aju®, m>2, apm > 0.
=0
e [l is a Dirichlet projector defined as
~ k- - ke
(X F0/N) %) = 5 /Ny X
keZ? |k|<N
for
. ke
f@)= > f(k/N)e'N
keZ?
a function on T%, = (R/27rNZ)2.



The microscopic model (sequel)

e Without the term N=MxV/(w) in
02u + |Do|?u + N NyVv/(w) = 0,

we have N linear waves (each Fourier coefficient) oscillating indepen-
dently.
e Indeed, the solution of

(9,52u + |Dz[?*w =0, w(0,z) =ug, 8u(0,z) = uq
IS given by
sin(t| Dy |%)

t,x) = cos(t|Dz|*) u
u(t, z) (t1D4]*) o + = =

Ui -
e \We have

cos(t|Dyz|*)(e"' N ) = cos(t|k/N|*) e' N
and a similar formula for the sin contribution.

e T he question we study : Understand how the weak nonlinear
interaction N—MxV/(u) modifies the free evolution for N >> 1.



On the nature of the nonlinear interaction

e The presence of Ny in

87u + |Dz|?u + N"'NyV/(u) =0, (t,2) € R x T%,

IS essential for the existence of the dynamics.
e Indeed, consider

82u 4 |Dy|?%u + N70u2F T =0, (¢,2) e R x T%,. (1)

Then for k > ﬁ (1) is an energy supercritical problem and it is not
clear at all that there is a well-defined flow, even for smooth data.
e More precisely, the energy controls the H® norm while the scaling

o

invariant norm is H17%. Then for a < 1,
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The initial data

e \We therefore consider
87u 4 |Dz|?u + N7NyV/(u) =0, (t,z) e R x T,

with gaussian initial data

u(0,z) = ¢on(z) , (Ou)(0,z) = YN (z),
where

1 k-

nyo—1 gr(w e'N
(27)2 \k\zng (k)

dn(x) =

1
with (k) := (1 4 |k|2%)2 and
1

Yn(z) = (272

N1 Z hi(w) ei%j.

[k|<N
e Here g, and h; are standard complex Gaussians such that g, = g,
h; = h_; and otherwise independent.
e The initial position ¢p(x) and the initial speed ¥ (x) are gaussians
with variances ~ 1, independent of z.



On the structure of the initial data

e [ he initial data is, very roughly speaking, essentially of the form

1 1 iz
N FR/N) gy(w) €5
(2m)2 \kIZS:N Ik

for a suitable function f: R? — R.

e \We have

Tr) = : x)=1
f@ = @
for the initial position and the initial velocity respectively.

e T his is a very restrictive choice related to the support of the corre-
sponding Gibbs measures.



Assumptions on the potential

e Note that ¢ has a stationary Gaussian distribution. More precisely

on(z) ~N(0,0%), VzeT%,

where for a < 1

1 1 1 1

= dé +O(N—2(1-)y
A2 N2(1—a) |k|§N <k>2a f|-7T2 |§|<V1 |£|2a §+0( )

2

03 =

7

o

e Let 4 =N(0,02), and

(V)(=) = [V +yuldy)

be the average of V under x. Our main assumption on the polynomial
V' is the criticality and the positivity of its averaged version (V).



Assumptions on the potential (sequel)

More precisely, we suppose that V is an even polynomial, given by

2m .
V(z) =) ajz2=7, m > 2
=0
and we assume that the averaged polynomial

(V)(z) = [ V(= +yuldy)

satisfies
1. (V)”(O) = 0.

2. (V)(z) —(V)(0) > 0 for all z# 0.



Assumptions on the potential (sequel)

e \We have that
m .
(V)(2) = Y ajz™
7=0

where

a; = (2?)!E[V<2j>(f\f(o,02))] ,

and we can compute

S B S CLO LN ()
aﬂ_(zj)!kgj 2k —25)n k7 |

e T hen the the first assumption is a1 = 0 and the second one is

m

S a@;22U0"2 >0, VvzeR

Jj=2



Are there potentials satisfying the assumptions 7

o If we fix ap > 0, ... ,am > 0, we can find a; < 0 such that our
assumptions on V are satisfied. For example

V(z) = 2% — 455227
satisfies the assumptions.

e We can find V > 0 such that our assumptions are satisfied.



The macroscopic model

e Define the rescaled process uy on R x T2 by
un(t,z) i= N "% (N, Nz) .

e The spatial domain of uy becomes the standard torus T2 and the
equation for u) then becomes

O2un + | Dz un + N0 v/ (N luy) =0

with initial datum

(0. ) = N1 oy — L 9k(W) ika
N0 2) = NTEONIND) = 52 |k|z§:N (k)

and
1

Opun(0,2) = Nyy(Nz) = (272

> hp(w) etk

[k|<N
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The macroscopic model

e In order for the cubic power in the macroscopic dynamics
8,?uN —I— ‘Dgp|2a'lLN —|— N1+a_9|_|NV/(Na—1’UJN) =0

to have O(1) coefficient, one necessarily needs to set a and 6 such
that

l1+a-60=3(1—-a) <<= 6O6=4a-—2.

e [ herefore we expect that under such a scaling at macroscopic level
the dynamics is governed by a " cubic equation” (even of there is no
cubic term in the polynomial V' 1).

e [ he criticality condition on the averaged potential assures that the
linear term has a limit.

e [ his condition also guarantees that one does not need to do further
renormalizations at macroscopic level, as it assures that all divergent
terms cancel out themselves. Roughly speaking, if one wants to
see interesting (nontrivial) behavior at macroscopic level then the
averaged potential has to satisfy the criticality condition.
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Solving the cubic equation

e Consider
2 2« 3 __
Ofun + |Dz|“Yun + My (uny)” =0,

posed on T2 with gaussian initial data

1 > (gk(w) R () eik.x) (2)

(upn(0,2),0tun(0,2)) =
N N (27")2 k|<N <k>a

Theorem 1
Letl >a > g. Then there is a divergent sequence (cy)n>1 Such that
the solutions of

Ofun + | Dz un + HN((UN)3 — CNUN) =0

with initial data (2) converge almost surely in the sense of distribution
on R x T2, as N — oo.
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The full model

e \We now consider the full macroscopic problem
07u + | Do |?%u + N3A=n v/(Ne~1y) = 0.
e \We have that
N3 V(N ) = Ny (N4 Ay (vetu)) = Ny (Viw),
where
Vy(u) := N* -y (yo—1lyy,

T herefore, we have

Vi (u) = Z (2j)5j,NN_(zj_4>(1_a)H2j—1(u; G

=1
where H;(x; o) denotes the Hermite polynomial of degree [ and
D 1 1

ON = ) Z S
AT L eI2 k<N (k)
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The full model (sequel)

e Recall that the Hermite polynomials are defined by
k
te—1ot2 _ <~ t .
er 27" = ) EH]{(CC,O').
k=0
In particular

Hi(z;0) =z, Ho(z,0) = 2° — 0, Hs(z,0) = 23 — 30z.
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The full model

e \We have that the coefficients a; N appearing in

Vi(u) = ) (Qj)aj,NN_(Qj_4)(1_Q)H2j—1(UN; 5%)
=1

satisfy

im @ y=a;, VjeN.
N——+o0 3N J J

e We have that @ = 0 and that limit of N2(1=®g; y as N — +oo
exists. More precisely :

Proposition 2
Assume that a € @, 1). T here exists an absolute constant A\g € R,
such that as N — oo,

ay y = ap + AN 2379 o1 4 o(N 1),
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Main result

Theorem 3

Suppose that 1 > o > g. Let s < o— 1 and suppose that V satisfies
our assumptions. Let upn be the solution of

d2upn + |Dz|*%un + Ny Vi (uy) = 0,
with initial data

1

(un (0, ), run(0,z)) = (27)2

Z (gk(w) ok hy(w) eik-a:) . (3)

PR

There is X > 0 and a divergent sequence (cy)n>1 Such that the
solutions of

02vN + | Dz vy + My (A(vy)? — eyvy) =0

with initial data (3) converge almost surely in the sense of distribution
on R x T2, as N — oo and satisfy

]\/!Too HuN — UNHC([—T,T],HS(TQ)) — Oa VT > 0.
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Comments

e \We have that A\ = 4a» (which is necessarily > 0).

e \We can have more precise convergence of uy — vy by decomposing
vy In a random low regularity term plus a smoother contribution.
The smoother contribution converges in positive Sobolev regularity
norms.

e For V of high degree (depending on «), the data is of supercritical
regularity, even with respect to the threshold of probabilistic well-
posedness proposed by Deng-Nahmod-Yue.

e This type of weak universality was first studied by Hairer-Quastel
for deriving KPZ equation from microscopic growth models. Then it
was extended to other parabolic singular SPDE by many authors.
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Comments (sequel)

e Our techniques can be used to extend the weak universality result
of Gubunelli-Koch-Oh for the 2D stochastic nonlinear wave equation
to the stochastic nonlinear fractional wave equation with space-time
white noise, formally written as

02w + |Dz|?%u + Opu + M3 =¢,  (t,z) e RT x T?

when o > %. Gubunelli-Koch-Oh treat the case o« = 1.

e T he weak universality result of Gubunelli-Koch-Oh is a consequence
of the almost sure global well-posedness for the two-dimensional non-
linear wave equation (o« = 1) with any order nonlinearity, while for the
fractional wave equation with a < 1, the situation is radically differ-

ent.

e In a recent joint work with Liu-Wang, we proved similar universality
results in the 3d case. A challenging open problem remains open.
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The Gibbs measure

e Let 4 be the gaussian measure induced by the map

gk(w) zk:w
@ 2, G

e Let vy be the probability measure given by

2 ~
o (dg) = Lo Fr2 (W) =1/2((Mw9)*=53) ) da
N
The measure vy is well defined as long as am, > 0.
o If A :=a> > 0, then for any c € R the measure

n(de) .

v(c)(dg) = — —Afvrz #*tdute fr2672de gy

is also well-defined, where gbOk denotes the k-th Wick power of ¢ with
respect to the Gaussian structure induced by wu.
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The Gibbs measure (sequel)

Theorem 4
Let o € (%, 1). Suppose that V satisfies our assumptions. Then

sup |log Zx| < o0
N

and there exists ¢ € R such that vy converges to v(c) in total variation.
In particular, vy (A) converges to v(c)(A) for every Borel set A.

e [ he restriction o > % IS natural in the sense that in this range,

one can define the ¢* measure by an absolutely continuous density
with respect to the Gaussian measure p. The fourth Wick power ¢*%
fails to exist under u when a = %, in which case one expects to end
up with a measure (after further renormalizations) that is mutually

singular with respect to pu.

N

e Remark. We expect "triviality” for a =
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On the optimality of our assumptions

Proposition 5
If there exists 6 € R such that

m .
Z ajHQ(J_Q) <0
j=1

then there exists ¢ > 0 such that

log Zy > cN*1-2) vy N eN.
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Mains steps in the convergence proof

The convergence proof contains two ingredients :

1. A priori bounds resulting from the invariance of the Gibbs measures
associated both with the cubic equation and with the full model.

2. Dispersive effects giving LtQLgO local bounds.
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A first use an invariant measure

e \We have that for any 6 > 0O

(w) ik-x
| ¥ Te <

(ko < G

Lge —

|k|<N
in a set of residual probability < exp(—N%) for some 6 > 0.

e As in the work by Bourgain-Bulut thanks to invariant measure con-
siderations, we can propagate this information to the full solution uyy.

e [ his is unfortunately not sufficient to pass into the limit in terms
like

3, (N—<1—a>uN)2k+1

for k> 1 because of small losses of power of N in N—(l—o‘)uN.
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Exploiting the dispersive effect

e \We can overcome the above difficulty by writing

) = g (v ()

uR; (N_(l_o‘)uN
and by exploiting the LtQngO control coming from Strichartz estimates.
e [ his leads to local in time convergence.

e [ he global in time convergence crucially relies on the a priori bounds
on the global cubic dynamics. These bounds are again relying on
invariant measure considerations but this time for the limit dynamics.

e [ his essentially explains the basic idea behind the proof.
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A final remark

e As in the work by Bourgain-Bulut or by Burg-Tz. in the local
convergence, we have inequalities of type

in(8) < Cs(1og(N))ay (1),
i.e. we allow a slow growth of order exp ((Iog(N))5), 6 < 1.

e This is compensated by the convergence of x5 (0) which is of order
N—Y for some 6 > 0.
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Perspectives

Similar results for other dispersive models.

The Benjamin-Ono equation seems a challenging case.

Triviality results when the assumptions on V are not satisfied.

T he critical case.
More general initial data.

Universal models coming from interactions of higher degree.
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Thank you very much |
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