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The microscopic model

• For N ≥ 1, consider as a microscopic model the wave dynamics

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0, (t, x) ∈ R× T2
N , α ≤ 1,

where θ > 0 , |Dx|2α = (−∆)α and

T2
N ≡ (R/2πN)2, V (u) =

m∑
j=0

aju
2j, m ≥ 2, am > 0.

• ΠN is a Dirichlet projector defined as

ΠN

( ∑
k∈Z2

f̂(k/N) ei
k·x
N

)
=

∑
|k|≤N

f̂(k/N) ei
k·x
N

for

f(x) =
∑
k∈Z2

f̂(k/N) ei
k·x
N

a function on T2
N = (R/2πNZ)2.
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The microscopic model (sequel)

• Without the term N−θΠNV
′(u) in

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0,

we have N linear waves (each Fourier coefficient) oscillating indepen-
dently.
• Indeed, the solution of

∂2
t u+ |Dx|2αu = 0, u(0, x) = u0, ∂tu(0, x) = u1

is given by

u(t, x) = cos(t|Dx|α)u0 +
sin(t|Dx|α)

|Dx|α
u1 .

• We have

cos(t|Dx|α)(ei
k·x
N ) = cos(t|k/N |α) ei

k·x
N

and a similar formula for the sin contribution.

• The question we study : Understand how the weak nonlinear
interaction N−θΠNV

′(u) modifies the free evolution for N � 1.
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On the nature of the nonlinear interaction

• The presence of ΠN in

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0, (t, x) ∈ R× T2
N ,

is essential for the existence of the dynamics.

• Indeed, consider

∂2
t u+ |Dx|2αu+N−θu2k+1 = 0, (t, x) ∈ R× T2

N . (1)

Then for k > α
1−α (1) is an energy supercritical problem and it is not

clear at all that there is a well-defined flow, even for smooth data.

• More precisely, the energy controls the Hα norm while the scaling

invariant norm is H1−αk . Then for α < 1,

1−
α

k
> α ⇐⇒ k >

α

1− α
.
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The initial data

• We therefore consider

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0, (t, x) ∈ R× T2
N

with gaussian initial data

u(0, x) = φN(x) , (∂tu)(0, x) = ψN(x),

where

φN(x) =
1

(2π)2
Nα−1 ∑

|k|≤N

gk(ω)

〈k〉α
ei
k·x
N ,

with 〈k〉α := (1 + |k|2α)
1
2 and

ψN(x) =
1

(2π)2
N−1 ∑

|k|≤N
hk(ω) ei

k·x
N .

• Here gk and hk are standard complex Gaussians such that gk = g−k,
hk = h−k and otherwise independent.
• The initial position φN(x) and the initial speed ψN(x) are gaussians
with variances ∼ 1, independent of x.
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On the structure of the initial data

• The initial data is, very roughly speaking, essentially of the form

1

(2π)2
N−1 ∑

|k|≤N
f(k/N) gk(ω) ei

k·x
N .

for a suitable function f : R2 → R.

• We have

f(x) =
1

〈x〉α
, f(x) = 1

for the initial position and the initial velocity respectively.

• This is a very restrictive choice related to the support of the corre-

sponding Gibbs measures.
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Assumptions on the potential

• Note that φN has a stationary Gaussian distribution. More precisely

φN(x) ∼ N (0, σ2
N) , ∀x ∈ T2

N ,

where for α < 1

σ2
N =

1

4π2N2(1−α)

∑
|k|≤N

1

〈k〉2α
=

1

4π2

∫
|ξ|<1

1

|ξ|2α
dξ︸ ︷︷ ︸

σ2

+O(N−2(1−α)) .

• Let µ = N (0, σ2), and

〈V 〉(z) :=
∫
R
V (z + y)µ(dy)

be the average of V under µ. Our main assumption on the polynomial

V is the criticality and the positivity of its averaged version 〈V 〉.
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Assumptions on the potential (sequel)

More precisely, we suppose that V is an even polynomial, given by

V (z) =
2m∑
j=0

ajz
2j , m ≥ 2

and we assume that the averaged polynomial

〈V 〉(z) :=
∫
R
V (z + y)µ(dy)

satisfies

1. 〈V 〉′′(0) = 0.

2. 〈V 〉(z)− 〈V 〉(0) > 0 for all z 6= 0.
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Assumptions on the potential (sequel)

• We have that

〈V 〉(z) =
m∑
j=0

ajz
2j

where

aj =
1

(2j)!
E
[
V (2j)

(
N (0, σ2)

)]
,

and we can compute

aj =
1

(2j)!

m∑
k=j

(2k)!

(2k − 2j)!!
· ak · σ2(k−j) .

• Then the the first assumption is a1 = 0 and the second one is

m∑
j=2

aj z
2(j−2) > 0, ∀ z ∈ R.
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Are there potentials satisfying the assumptions ?

• If we fix a2 > 0, ... ,am > 0, we can find a1 < 0 such that our

assumptions on V are satisfied. For example

V (z) = z6 − 45σ2z2

satisfies the assumptions.

• We can find V ≥ 0 such that our assumptions are satisfied.
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The macroscopic model

• Define the rescaled process uN on R× T2 by

uN(t, x) := N1−αu(Nαt,Nx) .

• The spatial domain of uN becomes the standard torus T2 and the

equation for uN then becomes

∂2
t uN + |Dx|2αuN +N1+α−θΠNV

′(Nα−1uN) = 0

with initial datum

uN(0, x) = N1−αφN(Nx) =
1

(2π)2

∑
|k|≤N

gk(ω)

〈k〉α
eik·x

and

∂tuN(0, x) = NψN(Nx) =
1

(2π)2

∑
|k|≤N

hk(ω) eik·x.
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The macroscopic model

• In order for the cubic power in the macroscopic dynamics

∂2
t uN + |Dx|2αuN +N1+α−θΠNV

′(Nα−1uN) = 0

to have O(1) coefficient, one necessarily needs to set α and θ such

that

1 + α− θ = 3(1− α) ⇐⇒ θ = 4α− 2 .

• Therefore we expect that under such a scaling at macroscopic level

the dynamics is governed by a ”cubic equation” (even of there is no

cubic term in the polynomial V ′ !).

• The criticality condition on the averaged potential assures that the

linear term has a limit.

• This condition also guarantees that one does not need to do further

renormalizations at macroscopic level, as it assures that all divergent

terms cancel out themselves. Roughly speaking, if one wants to

see interesting (nontrivial) behavior at macroscopic level then the

averaged potential has to satisfy the criticality condition.
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Solving the cubic equation

• Consider

∂2
t uN + |Dx|2αuN + ΠN(uN)3 = 0,

posed on T2 with gaussian initial data

(uN(0, x), ∂tuN(0, x)) =
1

(2π)2

∑
|k|≤N

(
gk(ω)

〈k〉α
eik·x , hk(ω) eik·x

)
. (2)

Theorem 1

Let 1 > α > 8
9. Then there is a divergent sequence (cN)N≥1 such that

the solutions of

∂2
t uN + |Dx|2αuN + ΠN

(
(uN)3 − cNuN

)
= 0

with initial data (2) converge almost surely in the sense of distribution

on R× T2, as N →∞.
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The full model

• We now consider the full macroscopic problem

∂2
t u+ |Dx|2αu+N3(1−α)ΠNV

′(Nα−1u) = 0.

• We have that

N3(1−α)ΠNV
′(Nα−1u) = ΠN

(
N4(1−α)V (Nα−1u)

)′
= ΠN(V ′N(u)),

where

VN(u) := N4(1−α)V (Nα−1u).

Therefore, we have

V ′N(u) =
m∑
j=1

(2j)aj,NN
−(2j−4)(1−α)H2j−1(u; σ̃2

N),

where Hl(x;σ) denotes the Hermite polynomial of degree l and

σ̃2
N :=

1

4π2

∑
k∈Z2,|k|≤N

1

〈k〉2α
.
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The full model (sequel)

• Recall that the Hermite polynomials are defined by

etx−
1
2σt

2
=
∞∑
k=0

tk

k!
Hk(x;σ).

In particular

H1(x;σ) = x, H2(x, σ) = x2 − σ, H3(x, σ) = x3 − 3σx.
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The full model

• We have that the coefficients aj,N appearing in

V ′N(u) =
m∑
j=1

(2j)aj,NN
−(2j−4)(1−α)H2j−1(uN ; σ̃2

N)

satisfy

lim
N→+∞

aj,N = aj , ∀ j ∈ N.

• We have that a1 = 0 and that limit of N2(1−α)a1,N as N → +∞
exists. More precisely :

Proposition 2

Assume that α ∈
(

1
2,1

)
. There exists an absolute constant λ0 ∈ R,

such that as N →∞,

a1,N = a1 + λ0N
−2(1−α) +O(N−1) +O(N−4(1−α)).
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Main result

Theorem 3

Suppose that 1 > α > 8
9. Let s < α − 1 and suppose that V satisfies

our assumptions. Let uN be the solution of

∂2
t uN + |Dx|2αuN + ΠNV

′
N(uN) = 0,

with initial data

(uN(0, x), ∂tuN(0, x)) =
1

(2π)2

∑
|k|≤N

(gk(ω)

〈k〉α
eik·x , hk(ω) eik·x

)
. (3)

There is λ > 0 and a divergent sequence (cN)N≥1 such that the

solutions of

∂2
t vN + |Dx|2αvN + ΠN(λ(vN)3 − cNvN) = 0

with initial data (3) converge almost surely in the sense of distribution

on R× T2, as N →∞ and satisfy

lim
N→∞

‖uN − vN‖C([−T,T ],Hs(T2)) = 0, ∀T > 0.
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Comments

• We have that λ = 4a2 (which is necessarily > 0).

• We can have more precise convergence of uN − vN by decomposing

vN in a random low regularity term plus a smoother contribution.

The smoother contribution converges in positive Sobolev regularity

norms.

• For V of high degree (depending on α), the data is of supercritical

regularity, even with respect to the threshold of probabilistic well-

posedness proposed by Deng-Nahmod-Yue.

• This type of weak universality was first studied by Hairer-Quastel

for deriving KPZ equation from microscopic growth models. Then it

was extended to other parabolic singular SPDE by many authors.
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Comments (sequel)

• Our techniques can be used to extend the weak universality result

of Gubunelli-Koch-Oh for the 2D stochastic nonlinear wave equation

to the stochastic nonlinear fractional wave equation with space-time

white noise, formally written as

∂2
t u+ |Dx|2αu+ ∂tu+ λu�3 = ξ, (t, x) ∈ R+ × T2

when α > 8
9. Gubunelli-Koch-Oh treat the case α = 1.

• The weak universality result of Gubunelli-Koch-Oh is a consequence

of the almost sure global well-posedness for the two-dimensional non-

linear wave equation (α = 1) with any order nonlinearity, while for the

fractional wave equation with α < 1, the situation is radically differ-

ent.

• In a recent joint work with Liu-Wang, we proved similar universality

results in the 3d case. A challenging open problem remains open.
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The Gibbs measure

• Let µ be the gaussian measure induced by the map

ω 7−→
1

(2π)2

∑
k∈Z2

gk(ω)

〈k〉α
eik·x .

• Let νN be the probability measure given by

νN(dφ) =
1

ZN
e
−
∫
T2

(
VN(ΠNφ)−1/2((ΠNφ)2−σ̃2

N)
)

dx
µ(dφ) .

The measure νN is well defined as long as am > 0.

• If λ := a2 > 0, then for any c ∈ R the measure

ν(c)(dφ) =
1

Z
e−λ

∫
T2 φ

�4dx+c
∫
T2 φ

�2dxµ(dφ)

is also well-defined, where φ�k denotes the k-th Wick power of φ with

respect to the Gaussian structure induced by µ.
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The Gibbs measure (sequel)

Theorem 4

Let α ∈ (3
4,1). Suppose that V satisfies our assumptions. Then

sup
N
| logZN | < +∞

and there exists c ∈ R such that νN converges to ν(c) in total variation.

In particular, νN(A) converges to ν(c)(A) for every Borel set A.

• The restriction α > 3
4 is natural in the sense that in this range,

one can define the φ4 measure by an absolutely continuous density

with respect to the Gaussian measure µ. The fourth Wick power φ�4

fails to exist under µ when α = 3
4, in which case one expects to end

up with a measure (after further renormalizations) that is mutually

singular with respect to µ.

• Remark. We expect ”triviality” for α = 1
2 ...
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On the optimality of our assumptions

Proposition 5

If there exists θ ∈ R such that

m∑
j=1

ajθ
2(j−2) < 0

then there exists c > 0 such that

logZN > cN4(1−α), ∀N ∈ N.
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Mains steps in the convergence proof

The convergence proof contains two ingredients :

1. A priori bounds resulting from the invariance of the Gibbs measures

associated both with the cubic equation and with the full model.

2. Dispersive effects giving L2
t L
∞
x local bounds.
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A first use an invariant measure

• We have that for any δ > 0∥∥∥ ∑
|k|≤N

gk(ω)

〈k〉α
eik·x

∥∥∥
L∞x
≤ CδN1−α+δ

in a set of residual probability . exp(−Nθ) for some θ > 0.

• As in the work by Bourgain-Bulut thanks to invariant measure con-

siderations, we can propagate this information to the full solution uN .

• This is unfortunately not sufficient to pass into the limit in terms

like

u3
N

(
N−(1−α)uN

)2k+1

for k � 1 because of small losses of power of N in N−(1−α)uN .
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Exploiting the dispersive effect

• We can overcome the above difficulty by writing

u3
N

(
N−(1−α)uN

)2k+1
= N−(1−α)u4

N

(
N−(1−α)uN

)2k

and by exploiting the L2
t L
∞
x control coming from Strichartz estimates.

• This leads to local in time convergence.

• The global in time convergence crucially relies on the a priori bounds

on the global cubic dynamics. These bounds are again relying on

invariant measure considerations but this time for the limit dynamics.

• This essentially explains the basic idea behind the proof.
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A final remark

• As in the work by Bourgain-Bulut or by Burq-Tz. in the local

convergence, we have inequalities of type

ẋN(t) ≤ Cδ(log(N))δxN(t),

i.e. we allow a slow growth of order exp
(
(log(N))δ

)
, δ < 1.

• This is compensated by the convergence of xN(0) which is of order

N−θ for some θ > 0.
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Perspectives

• Similar results for other dispersive models.

• The Benjamin-Ono equation seems a challenging case.

• Triviality results when the assumptions on V are not satisfied.

• The critical case.

• More general initial data.

• Universal models coming from interactions of higher degree.
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Thank you very much !
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