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Sobolev spaces

• For a function f on Td = (R/(2πZ))d given by its Fourier series

f(x) =
∑
n∈Zd

f̂(n) ein·x,

we define the Sobolev norm Hs of f as

‖f‖2Hs =
∑
n∈Zd
〈n〉2s |f̂(n)|2 .

Here f̂(n) are the Fourier coefficients of f and

〈n〉 = (1 + n2
1 + · · ·+ n2

d)
1
2 .

• For s ≥ 0 an integer, we have

‖f‖Hs ≈
∑
|α|≤s

‖∂αf‖L2 .
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The nonlinear Klein-Gordon equation

• Consider

(∂2
t −∆ + 1)u+ u3 = 0, (1)

where ∆ is the Laplacian and u is a real valued function.

• If we multiply the equation (1) by ∂tu, we formally get

d

dt

( ∫ (
|∇u|2 + u2 + (∂tu)2 +

1

2
u4
))

= 0 .

Therefore (u, ∂tu) ∈ H1 × L2 is a natural framework for the solutions

of (1).
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The nonlinear Klein-Gordon equation

Theorem 1 (classical)

• For every (u0, u1) ∈ H1(T3) × L2(T3) there exists a unique global

solution of

(∂2
t −∆ + 1)u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x)

in the class (u, ∂tu) ∈ C(R;H1(T3)× L2(T3)) .

• If in addition (u0, u1) ∈ Hs(T3)×Hs−1(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)×Hs−1(T3)) .

The dependence with respect to the initial data is continuous.

• The local in time part of Theorem 1 can be extended to the case

(u0, u1) ∈ Hs(T3)×Hs−1(T3), s ≥ 1/2, and the global in time part to

s > 3/4 (Kenig-Ponce-Vega, Gallagher-Planchon, Roy).

• We conjecture that Theorem 1 remains true for s ≥ 1/2 (related

recent work by Dodson).
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Limit of the deterministic methods

Theorem 2

Let s ∈ (0,1/2) et (u0, u1) ∈ Hs(T3) × Hs−1(T3). There exists a

sequence

uN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆ + 1)uN + u3

N = 0

with

lim
N→+∞

‖(uN(0)− u0, ∂tuN(0)− u1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→+∞

sup
0≤t≤T

‖uN(t)‖Hs(T3) = +∞.

• The proof is based on an idea introduced by Lebeau and further

developed by Christ-Colliander-Tao, Burq-Tz., Xia.
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Solving the equation by probabilistic methods

• Inspired by the work of Bourgain in the early 1990’s on invariant

measures for NLS, we can ask whether some form of well-posedness

survives for initial data in

Hs(T3)×Hs−1(T3), s < 1/2. (2)

• The answer of this question is positive if we endow the space (2)

with a non degenerate probability measure such that we have the ex-

istence, the uniqueness, and a form of continuous dependence almost

surely with respect to this measure.
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Choice of the measure

• Fix a real number σ. We will choose the initial data among the

realisations of the following random series

uω0(x) =
∑
n∈Z3

gn(ω)

〈n〉σ+1
ein·x , uω1(x) =

∑
n∈Z3

hn(ω)

〈n〉σ
ein·x . (3)

Here {gn}n∈Z3 et {hn}n∈Z3 are two families of independent random

variables conditioned by gn = g−n and hn = h−n, so that uω0 and uω1
are real valued.

• In addition, we suppose that for n 6= 0, gn and hn are complex gaus-

sians from NC(0,1), and that g0 and h0 are standard real gaussians

from N (0,1).

• The initial data (3) belong almost surely to Hs(T3)×Hs−1(T3) for

s < σ − 1
2(= σ + 1− 3

2). Moreover, the probability of the event

(uω0, u
ω
1) ∈ Hσ−1

2(T3)×Hσ−3
2(T3)

is zero.
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Reformulation of the ill-posedness result

Theorem 3

Let σ ∈ (1/2,1) and 0 < s < σ− 1/2. For almost every ω, there exists

a sequence

uωN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆ + 1)uωN + (uωN)3 = 0

with

lim
N→+∞

‖(uωN(0)− uω0, ∂tu
ω
N(0)− uω1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→+∞

sup
0≤t≤T

‖uωN(t)‖Hs(T3) = +∞.

We can however prove the following result:
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Theorem 4 (Burq-Tz. (2010))

Let σ ∈ (1/2,1) and 0 < s < σ − 1/2. Define (thanks to the classical
well-posedness result) the sequence (uN)N≥1 of solutions of

(∂2
t −∆ + 1)u+ u3 = 0 (4)

with C∞ initial data

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉σ+1
ein·x , uω1(x) =

∑
|n|≤N

hn(ω)

〈n〉σ
ein·x .

The sequence (uN)N≥1 converges almost surely as N →∞ in C(R;Hs(T3))
to a (unique) limit u which satisfies (4) in the distributional sense.

• Therefore the type of the approximation of the initial data is crucial
when we prove probabilistic low regularity well-posedness.
• Even if we consider the approximation of the initial data by Fourier
truncation there is dense set of pathological data such that the state-
ment of Theorem 4 does not hold (recent work by Sun-Tz.).
• We can prove uniqueness in a suitable functional framework.
• We can consider more general randomisations (this fact had an
important impact in the field).
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Going further

Theorem 5 (Oh-Pocovnicu-Tz. (2019))

Let σ ∈ (1
4,

1
2] and s < σ − 1/2. There exists a divergent sequence

(cN)N≥1 such that if we denore by (uωN)N≥1 the solution of

∂2
t u−∆u+ u− cNu+ u3 = 0, (5)

with initial data given by

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉σ+1
ein·x , uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉σ
ein·x

then for almost every ω there exists Tω > 0 such that (uωN)N≥1 con-
verges in C([−Tω, Tω];Hs(T3)).

• Theorem 5 was the first step in the study of the nonlinear wave
equation in Sobolev spaces of negative indexes.
• Recent work by Bringmann allows to have σ > 0 (there are related
works by Gubinelli-Koch-Oh, Deng-Nahmod-Yue).
• For σ = 0 there is exceptionally an invariant measure and one may
hope to get global solutions by an argument of Bourgain. Solving
this problem now only seems a question of time.
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A puzzling remark

• Unfortunately, even if these last results are satisfactory as far indi-

vidual trajectories are concerned, these results give no inside on the

macroscopical description of the flow. Namely, we do not know what

is the transport by the flow of the measure induced by the map

ω 7−→
( ∑
n∈Z3

gn(ω)

〈n〉σ+1
ein·x,

∑
n∈Z3

hn(ω)

〈n〉σ
ein·x

)
.

• It turned out that the answer of the last question of macroscopical

description is hard from being obvious even for large σ (gaussian fields

with regular typical elements).

• However, as we shall see right now we find easily the answer of the

above question for the linear equation.
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The linear equation

• Consider the linear Klein-Gordon equation

∂2
t u−∆u+ u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), (6)

where u0 and u1 are real valued and u : R × T3 −→ R. The solutions

of (6) are given by

S(t)(u0, u1) ≡ cos(t
√

1−∆)(u0) +
sin(t

√
1−∆)√

1−∆
(u1),

where

cos(t
√

1−∆)(u0) ≡
∑
n∈Z3

cos(t〈n〉)û0(n) ein·x ,

sin(t
√

1−∆)√
1−∆

(u1) ≡
∑
n∈Z3

sin(t〈n〉)
〈n〉

û1(n) ein·x .
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The free evolution

• It follows directly from the definition that the operator

S̄(t) ≡ (S(t), ∂tS(t)),

where

∂tS(t)(u0, u1) ≡ −
√

1−∆ sin(t
√

1−∆)(u0) + cos(t
√

1−∆)(u1)

is bounded on Hσ ×Hσ−1, S̄(0) = Id and S̄(t+ τ) = S̄(t) ◦ S̄(τ).

• In the proof of the boundedness of S̄(t) on Hσ × Hσ−1, we only

use the boundedness of cos(t〈n〉) and sin(t〈n〉). One may use the

oscillations of cos(t〈n〉) and sin(t〈n〉) for |n| � 1 in order to get more

involved Lp, p > 2 properties of the map S̄(t) (Strichartz estimates).
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Invariant spaces of the linear evolution

Set

l1 =

(
cos(n · x)

0

)
, l2 =

(
0

cos(n · x)

)
.

Then by definition for real numbers λ1, λ2, we can write

S̄(t)(λ1l1 + λ2l2) = (λ1 cos(t〈n〉) + λ2〈n〉−1 sin(t〈n〉))l1

+ (−λ1〈n〉 sin(t〈n〉) + λ2 cos(t〈n〉))l2

Hence in the plane spanned by l1, l2, the map S̄(t) is represented by

A =

(
cos(t〈n〉) −〈n〉 sin(t〈n〉)

〈n〉−1 sin(t〈n〉) cos(t〈n〉)

)
.

We have that det(A) = 1 and that for every σ, the quadratic form

Q(X,Y ) = 〈n〉2σ+2X2 + 〈n〉2σY 2

is preserved by S̄(t).
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Invariant spaces of the linear evolution (sequel)

Let us equip the line spanned by l1 with the gaussian measure

〈n〉σ+1
√

2π
e−
〈n〉2σ+2x2

2 dx,

the line spanned by l2 with the gaussian measure

〈n〉σ√
2π
e−
〈n〉2σx2

2 dx.

Denote by γ the natural product measure in the plane spanned by l1
and l2. Then thanks to the previous discussion, we have :

Proposition 6

The measure γ is invariant under the restriction of S̄(t) to the plane
spanned by l1 and l2.

A similar analysis holds concerning the plane spanned by(
sin(n · x)

0

)
,

(
0

sin(n · x)

)
.
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Invariance under the free evolution

Denote by µσ the measure induced by the map

ω 7−→
( ∑
n∈Z3

gn(ω)

〈n〉σ+1
ein·x,

∑
n∈Z3

hn(ω)

〈n〉σ
ein·x

)
.

The previous analysis yields :

Proposition 7

Let σ ∈ R. The measure µσ is invariant under the linear evolution S̄(t).

Question : How much this property survives for the nonlinear flow ?
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The measure µσ and the nonlinear equation

• Consider again the nonlinear Klein-Gordon equation

∂2
t u−∆u+ u+ u3 = 0, (7)

where u : R× T3 −→ R.

• We rewrite (7) as the first order system

∂tu = v, ∂tv = ∆u− u− u3. (8)

• One can rewrite (8) as a Hamiltonian system

∂tu =
δE

δv
, ∂tv = −

δE

δu
,

where

E(u, v) =
1

2

∫
T3

(
u2 + |∇u|2 + v2

)
+

1

4

∫
T3
u4 .

• Therefore E(u, v) is a first integral for (8).
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Recalling the global well-posedness

• In view of the Hamiltonian structure and the properties of the linear

equation, a natural phase space for

∂tu = v, ∂tv = ∆u− u− u3. (9)

is

Hs(T3) ≡ Hs(T3)×Hs−1(T3) .

Theorem 8 (the classical result again)

Let s ≥ 1. For every (u0, v0) ∈ Hs(T3) there is a unique solution of

(9) in C(R;Hs(T3)).

• Denote by Φ(t) : Hs(T3)→Hs(T3) the resulting flow in Theorem 8.

• We are interested in the statistical description of Φ(t).
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Theorem 9 (Gunaratnam-Oh-Tz.-Weber (2019))

Let σ ≥ 4 be an even integer. Then µσ is quasi-invariant under the

nonlinear flow Φ(t).

• This result was perviously obtained by Tz. for T1 and Oh-Tz. for

T2.

• For d = 1,2 we prove more than for d = 3.

• For d = 2,3 renormalisation arguments are needed.

• The result of Theorem 9 holds also for the cubic wave equation

∂2
t u−∆u+ u3 = 0 .
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A corollary

Theorem 10 (a stability property)

Let σ ≥ 4 be an even integer. Let

f1(u, v), f2(u, v) ∈ L1(dµσ(u, v))

and let Φ(t) be the flow of

∂tu = v, ∂tv = ∆u− u− u3,

defined µσ a.s. Then for every t ∈ R, the transports of the measures

f1(u, v)dµσ(u, v), f2(u, v)dµσ(u, v)

by Φ(t) are given by

F1(t, u, v)dµσ(u, v), F2(t, u, v)dµσ(u, v)

respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµσ). Moreover

‖F1(t)− F2(t)‖L1(dµσ) = ‖f1 − f2‖L1(dµσ) .
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Further comments

• The proof crucially exploits the ”dispersion” for any σ. More pre-

cisely, µσ are not quasi-invariant under the flow of

∂tu = v, ∂tv = −u− u3,

as shown in a recent work by Sosoe-Trenberth-Xiao.

• I would love to be able to prove that the same result should hold

for any σ > 1/2 (for σ ∈ (1/2,1] one should use a probabilistic global

well-posedness in the sense of Burq-Tz.).
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More about the gaussian measures µσ

• µσ is formally defined by

dµσ = Z−1
σ e

−1
2‖(u,v)‖2

Hσ+1dudv

or

Z−1
σ

∏
n∈Z3

e−
1
2〈n〉

2(σ+1)|ûn|2e−
1
2〈n〉

2σ|v̂n|2dûndv̂n ,

where ûn and v̂n denote the Fourier transforms of u and v respectively.

• For σ > 3/2, it is a gaussian measure on L2(T3) × L2(T3) with

covariance operator

((1−∆)−σ−1, (1−∆)−σ).
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More about the gaussian measures µσ (sequel)

• Our way to define µσ rigorously is to see it as the induced probability

measure under the map

ω 7−→ (uω(x), vω(x))

with

uω(x) =
∑
n∈Z3

gn(ω)

〈n〉σ+1
ein·x, vω(x) =

∑
n∈Z3

hn(ω)

〈n〉σ
ein·x . (10)

• The partial sums of the series in (10) are a Cauchy sequence in

L2(Ω;Hs(T3)) for every s < σ+ 1− 3
2 and therefore one can see µσ as

a probability measure on Hs for a fixed s < σ + 1− 3
2 = σ − 1

2.

• For the same range of s, the triplet
(
Hσ+1(T3),Hs(T3), µσ

)
forms

an abstract Wiener space.
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Related results 1 (Cameron-Martin 1944 )

Theorem 11 ( Cameron-Martin in the context of the measure µσ)

For a fixed (h1, h2) ∈ Hs, s < σ− 1
2, the transport of µσ under the shift

(u1, u2) 7−→ (u1, u2) + (h1, h2)

is absolutely continuous with respect to µσ if and only if

(h1, h2) ∈ Hσ+1 .



Our result in the context of Cameron-Martin’s theorem

• For (u, v) ∈ Hs, we classically have

Φ(t)(u, v) = S̄(t)
(
(u, v) + (h1, h2)

)
,

where (h1, h2) = (h1(u, v), h2(u, v)) ∈ Hs+1 (one smoothing and not

more).

• Clearly if s < σ−1
2 then s+1 < σ+1 and therefore our result displays

a remarkable property of the vector field generating Φ(t).

• More precisely, if (h1, h2) were independent of (u, v) of regularity

Hs+1 then the transported measure would not be absolutely contin-

uous with respect to µσ !
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Related results 2 (Ramer 1974)

• For s < σ − 1
2, let us consider a diffeo Φ on Hs(T3) of the form

Φ(u, v) = (u, v) + F (u, v),

where F : Hs(T3)→Hσ+1(T3). Suppose that

DF (u, v) : Hσ+1(T3)→Hσ+1(T3)

is Hilbert-Schmidt.

• Ramer (1974) : under the above assumption µσ is quasi-invariant

under Φ.

• Typical example :

F (u, v) = ε(1−∆)−3/2−δ(u2, v2), δ > 0, |ε| � 1,

i.e. 3-smoothing is needed.

• The Ramer’s result would apply in the context of

∂2
t u+ (−∆)αu+ u+ u3 = 0, α > 3.

• Therefore our result seems to go much beyond Ramer’s framework.
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Related results 3. (Cruzeiro 1983 )

• In her work Ana Bela Cruzeiro considers a general equation of the

form

∂tu = X(u),

where X is a vector field on Hs, s < σ − 1
2.

• A.B. Cruzeiro 1983 : the resulting flow has µσ as a quasi-invariant

measure provided that several assumptions are satisfied, the most

important being ∫
Hs

ediv(X(u))dµσ(u) <∞. (11)

• Very very roughly speaking, our work consists in verifying in practice

a conditions of type (11) by exploiting techniques from dispersive

PDE’s.
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A connection with the wave turbulence type problems

• In the WT problems one studies the behaviour of

N(n, t) = E
(
|F(Φ(t)(uω0, v

ω
0))(n)|2

)
, n ∈ Z3, t ∈ R

in various limits.

• Our results says that there exists a density (resulting from the

quasi-invariance)

F (t, ω) ≥ 0, F (t, ·) ∈ L1(Ω), F (0, ω) = 1

such that

N(n, t) =
∫

Ω

(|gn(ω)|2

〈n〉2σ+2
+
|hn(ω)|2

〈n〉2σ

)
F (t, ω)dp(ω) .

• Therefore the density F (t, ω) (if it exists !) contains all the infor-

mation needed to know N(n, t). It contains even more information.
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A connection with the wave turbulence type problems (sequel)

• Therefore the density F (t, ω) (if it exists !) contains all the infor-

mation needed to know N(n, t). It contains even more information.

• Recent work by Debussche-Tsutsumi, Genovese-Luca-Tz. (in progress)

and Planchon-Visciglia-Tz. (in progress) allow to know some precise

informations on the densities F (t, ω).

• Therefore it does not seem impossible to me to study the WT limits

directly in the densities of the quasi-invariance results. It looks to be

an interesting line of research.
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A dual formulation

• Denote by u(t, x, ω) the solution of the nonlinear wave equation with

data

uω0(x) =
∑
n∈Z3

gn(ω)

〈n〉σ+1
ein·x, vω0(x) =

∑
n∈Z3

hn(ω)

〈n〉σ
ein·x .

• Then there exists a density

f(t, ω) ≥ 0, f(t, ·) ∈ L1(Ω), f(0, ω) = 1

such that:∫
Ω
|ûn(t, ω)|2f(t, ω)dp(ω) = 〈n〉−2(σ+1) , ∀n ∈ Z3

where un(t, ω) are the Fourier coefficients of u(t, x, ω).

• I do not know whether this remark may be of some interest in wave

turbulence considerations.
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Corresponding results for NLS

• In a work by Planchon-Visciglia-Tz. the previous quasi-invariance

results are extended to the 1d NLS. The NLS is harder than the wave

equation because of the lack of direct smoothing. However, we can

exploit some hidden smoothing via modified energies ...

• The extension to 2d is a challenging problem. Namely can we prove

that the measure induced by the map

ω 7−→
∑
n∈Z2

gn(ω)

〈n〉s
ein·x (12)

is quasi-invariant under the flow of the 2d NLS

i∂tu+ ∆u = |u|2u ?

(which is perfectly well-defined for data given by (12) as far as s > 2).

• I would be happy to know the answer of this question even only for

very large values of s.
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Thank you very much !

(hoping that better times will come soon)
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