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The KdV equation

• The Korteweg- de Vries (KdV) equation was derived at the end

of the 19’th century as an asymptotic model from the much more

complicated (but derived from first principles !) water-waves system.

The KdV equation reads

∂tu+ u∂xu+ ∂3
xu = 0,

where the unknown u is a real valued function.

• The KdV solitary waves are the following particular solutions

Sc(t, x) = cQ(
√
c(x− ct)), c > 0, Q(x) = 3ch−2(x/2) .

• cQ(
√
c x) is a stationary solution of

∂tu− c∂xu+ u∂xu+ ∂3
xu = 0.

• What about the stability of Sc(t, x) ?
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Stability of the KdV solitary waves

Theorem 1 (Benjamin 1972)

The solitary wave Sc(t, x) is (orbitally) stable as a solution of the KdV

equation. More precisely, for every ε > 0 there is δ > 0 such that for

every u0 ∈ H1(R) such that

‖u0(x)− Sc(0, x)‖H1 < δ

the solution of the KdV equation with initial datum u0 satisfies

inf
a∈R
‖u(t, x− a)− Sc(t, x)‖H1 < ε, ∀ t ∈ R.

• The Sobolev spaces H1(R) ≡ {u ∈ L2(R) : u′ ∈ L2(R)} measuring

the stability phenomenon is naturally imposed by the conservation

laws of KdV.

• The global well-posedness of KdV in H1(R) is due to Kenig-Ponce-

Vega.

• Asymptotic stability : Pego-Weinstein (1992), Martel-Merle (2001).
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The KP models

• When studying the stability of the KdV solitary waves under trans-

verse perturbations, the Soviet physicists Kadomtsev and Petviashvily

introduced in 1970 the two dimensional models

∂x(∂tu+ u∂xu+ ∂3
xu)± ∂2

yu = 0

called KP-I and KP-II equations depending on the sign in front of

∂2
yu.

• The sign plus gives KP-II while the sign minus gives KP-I.

• Sc(t, x) is a solution of the KP equations. The remarkable formal

analysis of KP led to the conjecture that the KdV solitary wave was

stable as a solution of the KP-II equation and that it was unstable as

a solution of the KP-I equation.

• A mathematically rigorous proof of such statements was out of reach

in 1970, in particular because of the lack of an analytic framework

for defining the KP dynamics (at least close to the solitary waves).
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The KP models (sequel)

• The natural idea we adopted in our works for an analytic framework

in the studying of the KP equations was to consider these equations

posed on the the product space R×T, i.e. for x ∈ R and y ∈ T, where

T = R/(2πZ) denotes a one dimensional torus.

• In other words, we consider solutions of the KP equations which are

localised in x (as Sc(t, x) is) and periodic in the transverse variable y

with period 2π.

• The choice of 2π is not canonical and any other period can be

considered as well.

• However, if u is a solution of the KP equations then so is

uλ(t, x, y) = λ2u(λ3t, λx, λ2y), ∀λ > 0.

Thus we can always reduce the matters to the period 2π.
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Results for KP-I

• The L2 norm is (at least formally) conserved by the flow of the

KP-I equation. So is the energy

E(u) =
∫
R×T

(∂xu)2 +
∫
R×T

(∂−1
x ∂yu)2 −

1

3

∫
R×T

u3 .

• Inspired by the structure of the KP-I conservation laws, we can

define the spaces Zs = Zs(R× T) as

Zs = {u : ‖(1 + |ξ|s + |ξ−1k|s)û(ξ, k)‖L2(Rξ×Zk) <∞}

and equipped with the natural norm (here by û(ξ, k) we denote the

Fourier transform of functions on the product space R× T).

Theorem 2 (Ionescu-Kenig 2007)

The KP-I equation is globally well-posed in Z2(R× T).

• The proof is based on a method introduced by Koch-Tz. for

studying low regularity well-posedness of dispersive PDE’s with strong

derivative losses in the non linear interactions.
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Results for KP-I (sequel)

Theorem 3 (Zakharov 1975, Rousset-Tz. 2009)

The KdV solitary wave Sc(t, x) is orbitally unstable as a solution of
the KP-I equation, provided c > 4/

√
3. More precisely, for every s ≥ 0

there exists η > 0 such that for every δ > 0 there exists uδ0 ∈ Z
2 ∩Hs

and a time T δ ≈ | log δ| such that

‖uδ0(x, y)− Sc(0, x)‖Hs(R×T) + ‖uδ0(x, y)− Sc(0, x)‖Z2(R×T) < δ

and the (global) solution of the KP-I equation satisfies

inf
a∈R
‖u(T δ, x− a, y)− Sc(T δ, x)‖L2(R×T) > η.

• The proof by Rousset-Tz. uses a quite general method for con-
structing approximate solutions close to the solitary waves due to
Grenier. One needs a soft energy estimate and location of the un-
stable modes analysis which in turn implies the crucial semi-group
estimates.
• The Zakharov proof is different and seems to only work for some
particular values of c. It is based on constructing an explicit solution
of the KP-I equation (related to the integrability features of KP-I).
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Results for KP-I (sequel)

Theorem 4 (Rousset-Tz. 2012)

The KdV solitary wave Sc(t, x) is orbitally stable as a solution of the

KP-I equation, provided c < 4/
√

3. More precisely, for every ε > 0,

there exists δ > 0 such that if the initial datum u0 of the KP-I equation

satisfies u0 ∈ Z2(R× T) and

‖u0(x, y)− Sc(0, x)‖Z1(R×T) < δ

then the solution of the KP-I equation with datum u0 satisfies

sup
t∈R

inf
a∈R
‖u(t, x− a, y)− Sc(t, x)‖Z1(R×T) < ε.

• The study of the critical speed (c = 4/
√

3) solitary waves is a

delicate open problem.
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Results for KP-II

• The L2 norm is (at least formally) conserved by the flow of the

KP-II equation. So is the energy

E(u) =
∫
R×T

(∂xu)2 −
∫
R×T

(∂−1
x ∂yu)2 −

1

3

∫
R×T

u3 .

• Therefore the L2 norm is the only useful a priori bound for KP-II.

This makes the analysis quite involved.

Theorem 5 (Molinet-Saut-Tz. 2011)

The KP-II equation

∂x(∂tu+ u∂xu+ ∂3
xu) + ∂2

yu = 0, x ∈ R, y ∈ T

is globally well-posed in L2(R× T).

• The proof is based on a delicate use of the Bourgain Xs,b spaces.
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Results for KP-II (sequel)

Theorem 6 (Mizumachi-Tz. 2012)

The KdV solitary wave Sc(t, x) is orbitally stable as a solution of the

KP-II equation for all c > 0 : for every ε > 0, there exists δ > 0 such

that if the initial datum u0 of the KP-II equation satisfies

‖u0(x, y)− Sc(0, x)‖L2(R×T) < δ

then the solution of the KP-II equation with datum u0 satisfies

sup
t∈R

inf
a∈R
‖u(t, x− a, y)− Sc(t, x)‖L2(R×T) < ε.

Moreover, there is also an asymptotic stability in the following sense.

There exists a constant c̃ satisfying c̃ − c = O(δ) and a modulation

parameter x(t) satisfying limt→∞ ẋ(t) = c̃ and such that

lim
t→∞

‖u(t, x, y)− Sc̃(0, x− x(t))‖L2((x≥ct/10)×Ty) = 0.

• For u0(x, y) independent of y, we recover a result of Merle-Vega for

the L2 stability of the KdV solitary waves.
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Extensions to the water-waves system

When we study solitary waves of speed c, we face the problem

∂tη = ∂xη +G[η]ϕ,

∂tϕ = ∂xϕ−
1

2
|∇ϕ|2 +

1

2

(G[η]ϕ+∇ϕ · ∇η)2

1 + |∇η|2
− αη + β∇ ·

∇η√
1 + |∇η|2

,

where η = η(t, x, y), ϕ = ϕ(t, x, y), t, x, y ∈ R, ∇ = (∂x, ∂y) and

α =
gh

c2
, β =

b

hc2
.

g is the gravity constant, b takes into account the surface tension

effects, h represents the deepness of the fluid domain and G[η] is

a Dirichlet-Neumann map. G[η] is a first order pseudo-differential

operator with principal symbol(
(1 + |∇η|2)|ξ|2 − (∇η · ξ)2

)1
2, ξ ∈ R2.
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Existence of solitary waves for the water-waves system

Theorem 7 (Amick-Kirchgässner 1989)

Suppose that α = 1 + ε2 and β > 1/3. Then there exists ε0 such that

for every ε ∈ (0, ε0) there is a stationary solution (ηε(x), ϕε(x)) of the

water-waves problem of the form

ηε(x) = ε2Θ(εx, ε), ϕε(x) = εΦ(εx, ε) .

We have that ηε is exponentially localised and

Θ(y,0) = −ch−2
(

y

2(β − 1/3)1/2

)
.

• Observe that the solitary waves established by the above result are

of speed essentially
√
gh.

• Mielke (2002) proved the analogue of the Benjamin result concern-

ing the stability of these solitary waves (under un assumptions of

global well-posedness close to the solitary waves).
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Transverse instability for the water-waves system

Theorem 8 (Rousset-Tz. 2011)

Suppose that α = 1 + ε2 and β > 1/3. There exists ε0 such that for

every ε ∈ (0, ε0) there is L0 > 0 such that for L > L0 the following

holds true. For every s ≥ 0, there exists κ > 0 such that for every

δ > 0, there exist (ηδ0(x, y), ϕδ0(x, y)) and a time T δ ∼ | log δ| such that

‖(ηδ0(x, y), ϕδ0(x, y))− (ηε(x), ϕε(x))‖Hs(R×TL)×Hs(R×TL) ≤ δ

and a solution (ηδ(t, x, y), ϕδ(t, x, y)) of the water-waves system, posed

on R×TL with initial datum (ηδ0, ϕ
δ
0), defined on [0, T δ] and satisfying

inf
a∈R
‖(ηδ(T δ, x, y), ϕδ(T δ, x, y))−(ηε(x−a), ϕε(x−a))‖L2(R×TL)×L2(R×TL) > κ.
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Open problems

• The critical speed problem for KP-I.

• We believe that KP-I is well-posed in Z1. This would relax the

assumption on the perturbation in the stability statement for sub-

critical speeds.

• Asymptotic stability for KP-I for for sub-critical speeds.

• We believe that there is a conditional small period stability for the

water-waves system (in the spirit of the work by Mielke).

• We also believe that we can have an unconditional statement in

Mielke’s analysis for finite but long time scales, depending on the size

of the initial perturbation.

• Stability results for the water-waves system in the KP-II regime.

For instance, one may try to extend the quite flexible approachof

Pego-Weinstein to the water-waves system.
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Thank you for the attention !
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