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The nonlinear wave equation

• In this talk, we consider the Cauchy problem for the nonlinear wave
equation, posed on the 3d torus T3 :

(∂2
t −∆)u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x) . (1)

• The energy ∫
T3

(
(∂tu)2 + |∇u|2

)
+

1

2

∫
T3
u4

is formally conserved by (1). For s ∈ R, we set

Hs(T3) := Hs(T3)×Hs−1(T3)

which is a natural phase space for (1).

Theorem 1 (classical)

• For every (u0, u1) ∈ H1(T3) there exists a unique global solution of
(1) in the class (u, ∂tu) ∈ C(R;H1(T3)) .

• If in addition (u0, u1) ∈ Hs(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)).

• The dependence with respect to the initial data is continuous.
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Lower regularity using the dispersion

• Thanks to the Strichartz estimates the local in time part of Theo-
rem 1 can be extended to the class (u0, u1) ∈ Hs(T3), s ≥ 1/2 .
• The global in time part can be extended to s > 3/4 using almost
conservation law techniques :

Theorem 2 (Kenig-Ponce-Vega, Gallagher-Planchon, Roy)

Let s > 3/4 and fix (u0, u1) ∈ Hs(T3). Let (u0,n, u1,n)n∈N be any
sequence of smooth data approximating (u0, u1) in Hs(T3) and let
un(t, x) be the smooth solution of

(∂2
t −∆)un + u3

n = 0, u|t=0 = u0,n, , ∂tu|t=0 = u1,n .

Then there exists a limit object u(t) such that for any T > 0,

lim
n→∞

∥∥∥(un(t), ∂tun(t))− (u(t), ∂tu(t))
∥∥∥
L∞([−T,T ];Hs(T3))

= 0.

Moreover u(t) solves the nonlinear wave equation in the sense of
distributions.

• We conjecture that Theorem 2 remains true for s ≥ 1/2 (proved
recently by Dodson in the radial case of R3).
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Limit of the deterministic methods

Theorem 3

Let s ∈ (0,1/2) et (u0, u1) ∈ Hs(T3). There exists a sequence

uN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆)uN + u3

N = 0

with

lim
N→+∞

‖(uN(0)− u0, ∂tuN(0)− u1)‖Hs(T3) = 0

but for every T > 0,

lim
N→+∞

‖uN(t)‖L∞([−T,T ];Hs(T3)) = +∞.

• The proof is based on an idea introduced by Gilles Lebeau and

further developed by Christ-Colliander-Tao, Burq-Gérard–Tz., Xia.
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Solving the equation by probabilistic methods

• We can ask whether some form of well-posedness survives for initial

data in Hs(T3), s < 1/2 ?

• The answer of this question is positive if we endow the space

Hs(T3), s < 1/2 with a non degenerate probability measure such that

we have the existence, the uniqueness, and a form of continuous

dependence almost surely with respect to this measure.
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Probabilistic global well-posedness

Theorem 4 (Burq-Tz. 2008)

Let 0 ≤ s < 1
2. Then there is a dense set Σ ⊂ Hs(T3) satisfying

Σ ∩ Hs′(T3) = ∅ for every s′ > s such that the following holds true.

For every (f, g) ∈ Σ, denote by (un(t))n∈N the smooth solutions of

(∂2
t −∆)un + u3

n = 0, u(0, x) = ρn ∗ f, , ∂tu(0, x) = ρn ∗ g ,

where (ρn)n∈N is an approximate identity. Then there exists a limit

object u(t) such that for any T > 0,

lim
n→∞

∥∥∥(un(t), ∂tun(t))− (u(t), ∂tu(t))
∥∥∥
L∞([−T,T ];Hs(T3))

= 0.

Moreover u(t) solves the nonlinear wave equation in the distributional

sense.
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Comments

• The proof of the previous result is inspired by the seminal contribu-

tion of 1994 by Bourgain. There are however several new features :

• The first one is that more general randomisations are allowed. This

led to similar results in the context of a non compact spatial domains.

• The argument allowing to pass from local to global solutions is based

on a probabilistic energy estimates (Gronwall method) while the ar-

gument giving the globalisation of the local solutions in the Bourgain

work is restricted to a very particular distribution of the initial data

related to the Gibbs measure (measure preserving method).

• The result by Burq-Tz. deals with functions of positive Sobolev

regularity which avoids a renormalization of the equation, making the

results more natural from a purely PDE perspective. In particular, it

is clear what ill-posedness means.
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Comments (sequel)

• It would very interesting to prove such type of results for quasi-linear

wave equations.

• A first result in this direction was obtained by B. Bringmann who

proved probabilistic well-posedness for equations of type

(∂2
t −∆)u = F (∇u),

and a quadratic F .
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The pathological set

• The result by Burz-Tz. provides a nice dense set Σ of initial data

such that for good approximations we get nice global solutions (but

for bad approximations we get divergent sequences !).

• What about initial data outside Σ ?

Theorem 5 (Sun-Tz. 2020)

Let 0 < s < 1
2. Then there is an approximate identity (ρn)n∈N and

there is a dense set S ⊂ Hs(T3) such that for every (f, g) ∈ S, the

family of the smooth solutions of

(∂2
t −∆)un + u3

n = 0, u(0, x) = ρn ∗ f, ∂tu(0, x) = ρn ∗ g

do not converge. More precisely, for every T > 0,

lim
n→∞ ‖un(t)‖L∞([0,T ];Hs(T3)) = +∞ .
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The pathological set (sequel)

• Consider again

(∂2
t −∆)un + u3

n = 0, u(0, x) = ρn ∗ f, ∂tu(0, x) = ρn ∗ g (2)

and let P be the set of (f, g) ∈ Hs(T3) such that the solution un of

(2) satisfies the property

lim sup
n→∞

‖un(t)‖L∞([0,1];Hs(T3)) = +∞ .

Corollary 6

The set P contains a dense Gδ subset of Hs(T3).

• Consequently, by the Baire category theorem, the good data set Σ

in the Burq-Tz. theorem is not a Gδ subset of Hs(T3).

• On the other hand, the pathological sets are negligible with respect

to the measures introduced by the natural gaussian fields used in the

probabilistic well-posedness results.

9



Comments

• The previous discussion confirms that the topological and the mea-

sure theoretic notions of genericity are very different.

• For examples of Gδ dense sets giving solutions of Hamiltonian PDE’s

with growing Sobolev norms for large times, we refer to the works by

Hani and Grellier-Gérard.

• In our result, the Sobolev norms are growing in very short times,

depending on the frequency localization of the initial data.

• Naive question : Is such a phenomenon present in the context of

the Lindblad ill-posedness results for quasi-linear wave equations ?

10



The ODE profile

• The basic idea is that since the regularity is supercritical the linear

part of the equation is treated as a perturbation.

• Therefore, we consider the solution of the ODE

V ′′+ V 3 = 0, V (0) = 1, V ′(0) = 0

which is globally defined and periodic (oscillating between 0 and 1).

• Let us fix the the positive bump functions ρ, ϕ ∈ C∞(R3), supported

in |x| ≤ 1
100, seen as functions on T3 with

∫
ρ = 1. As usual,

ρε(x) := ε−3ρ(x/ε). Let

vn(0, x) := κnn
3
2−sϕ(nx), vεn(0, x) := ρε∗vn(0, x), κn = (logn)−δ1, δ1 > 0 .

• Define

vεn(t, x) = vεn(0, x)V (t vεn(0, x)).

Then one verifies that vεn solves the dispersionless equation

∂2
t v

ε
n + (vεn)3 = 0, (vεn, ∂tv

ε
n)|t=0 = (vεn(0, x),0).
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Control on the profile

Proposition 7

Let 0 < s < 1
2. Set

εn =
1

100n
, tn = (logn)δ2n

−
(

3
2−s

)
, δ2 > 0.

Then we have the lower bound

‖vεnn (tn)‖Hs(T3) & κn(logn)(δ2−δ1)s

and the upper bounds

‖vεnn (t)‖Hk(T3) . κn (logn)(δ2−δ1)k nk−s, k = 0,1,2,3, · · · , t ∈ [0, tn],

‖∂αvεnn (t)‖L∞(T3) . (logn)δ2−δ1 n|α| κn n
3
2−s, α ∈ N3, |α| = 0,1, t ∈ [0, tn] .
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The perturbative analysis

• For (u0, u1) ∈ C∞(T3)× C∞(T3), denote by uεnn the solution of

∂2
t u

εn
n −∆uεnn + (uεnn )3 = 0

with the initial data

(uεnn (0), ∂tu
εn
n (0)) = ρεn ∗

(
(u0, u1) + (vn(0),0)

)
.

Proposition 8

Assume that 0 < s < 1
2. Then for any 0 < θ < 1

2

(
1
2 − s

)
there exist

C > 0, δ2 > 0, such that for any δ1 ∈ (0, δ2), we have

sup
t∈[0,tn]

‖uεnn (t)−ρεn∗S(t)(u0, u1)−vεnn (t)‖Hν(T3) ≤ Cn
(ν−s)−θ, ∀ν = 0,1,2,

where S(t) is the free evolution and the constant C only depends on
the smooth data (u0, u1) and θ > 0. Consequently, we have

sup
t∈[0,tn]

‖uεnn (t)− ρεn ∗ S(t)(u0, u1)− vεnn (t)‖Hs(T3) ≤ Cn
−θ.

In particular, for δ1 sufficiently small,

‖uεnn (tn)‖Hs(T3) & (logn)s(δ2−δ1)−δ1 →∞, as n→∞.
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Finite propagation speed of the nonlinear wave equation

Proposition 9

Let w1, w2 be two C∞ solutions of the nonlinear wave equation

∂2
t w −∆w + w3 = 0.

If the initial data (w1(0), ∂tw1(0)), (w2(0), ∂tw2(0)) coincide on the

ball

B(x0, r0) := {x ∈ R3 : |x− x0| ≤ r0}

then for 0 ≤ t < r0,

(w1(t), ∂tw1(t)) = (w2(t), ∂tw2(t))

on B(x0, r0 − t).
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Proof of the main result

• We identify T3 with [−π, π]3 and we use the coordinate system

x = (x1, x
′) near the origin. Let zk = (1

k ,0,0)

• Let nk = eek, and define

v0,k(x) := (lognk)−δ1n
3
2−s
k ϕ(nk(x1 −

1

k
), nkx

′) = vnk(0, · − zk) .

There exists k0, such that for all k ≥ k0, the supports of v0,k are

pairwise disjoint and for k0 ≤ k1 < k2,

dist
(
supp(v0,k1

), supp(v0,k2
)
)
∼

1

k1
−

1

k2
.

• Denote by Bk = B(zk, rk), where rk = 1
k3. For k0 � 1, the balls

Bk, k ≥ k0 are mutually disjoint. Moreover,

supp(ρεnk ∗ v0,k) ⊂ B̃k,

where B̃k = B(zk, rk/3) (recall that εnk = 1
100nk

).
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Proof of the main result (sequel)

• We have that

dist
(
supp(ρεnk ∗ (v0 − v0,k)), Bk

)
&

1

k2
,

where

v0 =
∑
k≥k0

v0,k ∈ Hs(T3).

• In particular, for any (u0, u1) ∈ C∞ × C∞,

ρεnk ∗ ((u0, u1) + (v0,0))

coincides with

ρεnk ∗ ((u0, u1) + (v0,k,0))

on the ball Bk.
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Proof of the main result (definition of the pathological set)

• Let k0 � 1, defined in the previous discussion. Set

S = C∞(T3)× C∞(T3) +
{( ∞∑

k=k1

v0,k,0
)

: k1 ≥ k0

}
.

• Since∥∥∥∥ ∞∑
k=k1

v0,k

∥∥∥∥
Hs(T3)

≤
∞∑

k=k1

‖v0,k‖Hs(T3) ≤
∞∑

k=k1

e−kδ1 → 0 as k1 →∞,

we conclude that S is dense in Hs(T3).
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Proof of the main result (sequel)

• Fix (f, g) ∈ S. By definition, there exists (u0, u1) ∈ C∞ × C∞ and

k1 ≥ k0, such that

(f, g) = (u0, u1) +
( ∞∑
k=k1

v0,k,0
)
.

• Our goal is to show that, for any N > 0 and any δ > 0, there exist

τN ∈ [0, T ] and 0 < ε < δ, such that the solution uε to our equation

with initial data ρε ∗ (f, g) satisfies

‖uε(τN)‖Hs(T3) > N. (3)

• We will choose k ≥ k1, large enough, such that

κnk(lognk)(δ2−δ1)s & N, εk =
1

100nk
< δ.

This can be achieved by choosing δ1 < δ2 such that s(δ2 − δ1) > δ1.
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Proof of the main result (sequel)

• Let ũk be the solution of our equation with the initial data

ρεnk ∗ (u0, u1) + ρεnk ∗ (v0,k,0) .

• Let ṽk be the solution of

∂2
t ṽk + (ṽk)3 = 0

with the initial data ρεnk ∗ (v0,k,0).

• We remark that ṽk, ũk are just v
εnk
nk , u

εnk
nk the proposition of the per-

turbative analysis, up to translation.

• In particular,

‖ũk(tnk)‖Hs(T3) & (lognk)s(δ2−δ1)−δ1, (4)

and

‖ũk(tnk)− ρεnk ∗ S(tnk)(u0, u1)− ṽk(tnk)‖Hs(T3) . n−θk . (5)
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Proof of the main result (sequel)

• We now apply the finite propagation speed property to ũk and uεnk.

At t = 0,

(uεnk(0), ∂tu
εnk(0))|Bk = (ũk(0), ∂tũk(0))|Bk,

and therefore

(uεnk(t), ∂tu
εnk(t))|B(zk,rk−t)

= (ũk(t), ∂tũk(t))|B(zk,rk−t)
, ∀0 ≤ t < rk.

• In particular, for large k,

(uεnk(t), ∂tu
εnk(t))|B(zk,rk/2) = (ũk(t), ∂tũk(t))|B(zk,rk/2), ∀t ∈ [0, tnk].

• Take χ ∈ C∞c (R3), such that χ(x) ≡ 1 if |x| < 1
3 and χ ≡ 0 if |x| ≥ 1

2.

Define χk(x) := χ((x−zk)/rk), hence χk|B̃k ≡ 1 and χk|(B(zk,rk/2))c ≡ 0.

Therefore, we have

χk(x)(uεnk(t), ∂tu
εnk(t)) = χk(x)(ũk(t), ∂tũk(t)), ∀t ∈ [0, tnk].
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Proof of the main result (sequel)

• Since s < 1/2, we can localise

‖uεnk(tnk)‖Hs(T3) & ‖χku
εnk(tnk)‖Hs(T3) ∼ ‖χk(x)ũk(tnk)‖Hs(T3).

• Next, we can write

‖χk(x)ũk(tnk)‖Hs(T3) ≥‖ũk(tnk)‖Hs(T3) − ‖(1− χk)ũk(tnk)‖Hs(T3)

=‖ũk(tnk)‖Hs(T3) − ‖(1− χk)(ũk(tnk)− ṽk(tnk))‖Hs(T3),

where in the last equality, we crucially use the fact that

(1− χk)ṽk(tnk) = 0,

thanks to the support property of ṽk.
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Proof of the main result (sequel)

• Therefore, we have

‖uεnk(tnk)‖Hs(T3) &‖ũk(tnk)‖Hs(T3) − ‖(1− χk)(ρεnk ∗ S(tnk)(u0, u1))‖Hs(T3)

−‖(1− χk)
(
ũk(tnk)− ρεnk ∗ S(tnk)(u0, u1)− ṽk(tnk)

)
‖Hs(T3).

• Consequently

‖uεnk(tnk)‖Hs(T3) & (lognk)s(δ2−δ1)−δ1 − C − n−θk .

• It remains to choose δ1 > 0 small such that s(δ2 − δ1)− δ1 > 0 and

k � 1.

• This completes the proof.
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On the proof of the corollary

• Denote by uε(t) = Φ(t)(ρε ∗ (f, g)) the solution of the cubic wave

equation with initial data ρε ∗ (f, g).

• The set

O := {(f, g) ∈ Hs(T3) : lim sup
k→∞

‖Φ(t)(ρεnk ∗ (f, g))‖L∞([0,1];Hs(T3)) =∞}

is contained in the pathological set P.

• As a byproduct of the previous analysis, S ⊂ O, hence O is dense.

• In addition

O =
∞⋂

N=1

ON ,

where

ON := {(f, g) ∈ Hs(T3) : lim sup
k→∞

‖Φ(t)(ρεnk ∗ (f, g))‖L∞([0,1];Hs(T3)) > N}.
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On the proof of the corollary (sequel)

• By definition,

ON =
∞⋂

k0=1

⋃
k=k0

ON,k,

where

ON,k := {(f, g) ∈ Hs(T3) : ‖Φ(t)(ρεnk ∗ (f, g))‖L∞([0,1];Hs(T3)) > N}.

• It is relatively straightforward to show that ON,k open. Therefore

O is a Gδ set.

24



Open problems

• I would be interested if one can extend this kind of results to other

equations.

• Our proof meets serious difficulties in the context of the nonlinear

Schrödinger equation (not only because of the lack of finite propaga-

tion speed).
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Related problems and results

• 2d low regularity weak solutions of the Euler equation as the ones

obtained by De Lellis- Székelyhidi are not limits of the smooth solu-

tions obtained by some regularisation of the data.

• 2d low regularity weak solutions of the 2d Euler equation with white

noise vorticity obtained by Flandoli are limits of true smooth solutions

of 2d Euler for some regularisation of the data.

• Low regularity solutions of KPZ obtained by Hairer are obtained

as unique limits of smooth solutions of the equations with a suitably

regularized noise. But in similar results for the heat equation this is

not the case.

• Low regularity solutions of the Benjamin-Ono equation obtained by

Ionescu-Kenig, Gérard-Kappeler-Topalov are obtained as unique lim-

its of smooth solutions of the equation for every regularisation of the

data.

...
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Thank you for your attention !

27


