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Multiple Fourier series

• Let Td = (R/(2πZ))d be a torus of dimension d.

• If f : Td → C is a C∞ function then for every x ∈ Td,

f(x) =
∑
n∈Zd

f̂(n) ein·x,

where f̂(n) are the Fourier coefficients of f , defined by

f̂(n) = (2π)−d
∫
Td
f(x)e−in·xdx .

• In particular

f̂(0) = (2π)−d
∫
Td
f(x) dx .
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Sobolev spaces on the torus

• For x = (x1, · · · , xd) ∈ Rd, we set

〈x〉 := (1 + x2
1 + · · ·+ x2

d)
1
2 .

• For s ∈ R, we define the Sobolev norm of f by

‖f‖2
Hs(Td) =

∑
n∈Zd
〈n〉2s|f̂(n)|2 . (1)

• For s ≥ 0 an integer, we have the norm equivalence

‖f‖2
Hs(Td) ≈

∑
|α|≤s

‖∂αf‖2
L2(Td) . (2)

In (2), ∂α denotes a partial derivative of order at most s.

• For s = 0, we recover the Lebesgue space L2(Td).

• The Sobolev space Hs(Td) is defined as the closure of C∞(Td) with

respect to the norm (1).
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Sobolev spaces on a manifold

• Let (M, g) be a compact riemannian boundaryless manifold and

(ϕn)n≥0 be an orthonormal basis of L2(M) diagonalizing the Laplace-

Beltrami operator ∆g such that

−∆gϕn = λ2
nϕn,

with 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .
• Then the Sobolev norm of a smooth function f on M is defined by

‖f‖2Hs(M) =
∞∑
n=0

〈λn〉2s|f̂(n)|2 , (3)

where

f̂(n) =
∫
M
f(x)ϕn(x)dx

is the ”size” of the projection of f on the line spanned by ϕn.

• The Sobolev space Hs(M) is again defined as the closure of C∞(M)

with respect to the norm (3).
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Almost sure improvements of the Sobolev embedding

• We now discuss an almost sure improvement of the Sobolev em-

bedding.

• We say that a random variable g belongs to NC(0, σ2), if g = h+ il,

where h ∈ N (0, σ2) and l ∈ N (0, σ2) are independent.

• Let u ∈ L2(T) be a deterministic function. There is a sequence

(cn)n∈Z ∈ l2(Z) (the Fourier coefficients of u) such that

u(x) =
∑
n∈Z

cne
inx .

• Consider now a randomised version of u given by the expression

uω(x) =
∑
n∈Z

cn gn(ω) einx ,

where (gn(ω))n∈Z are independent belonging to NC(0,1).
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Almost sure improvements of the Sobolev embedding (sequel)

•We have gn(ω) einx ∈ NC(0,1) (invariance under rotations of NC(0,1)).

• Next, using the independence of gn we get that for a fixed x ∈ T,

uω(x) ∈ NC

(
0,

∑
n∈Z
|cn|2

)
.

• Thus ∀ p < ∞, ‖uω(x)‖Lp(Ω) is finite and independent of x. Conse-

quently uω(x) ∈ Lp(Ω× T) which thanks fo Fubini gives :

Proposition 1

For every p <∞, uω(x) ∈ Lp(T), almost surely.

• The last statement is to compare with the Sobolev embedding :

H
1
2(T) is continuously embedded in Lp(T) for every p < ∞. The

statement is false, if we replace H
1
2(T) with Hs(T) for some s < 1/2.
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Almost sure improvements of the Sobolev embedding (sequel)

• Very informally : the randomisation gains a 1/2 derivative.

• We can replace the gaussians with much more general random

variables. For instance, let

vω(x) =
∑
n∈Z

cn hn(ω) einx ,

where (hn(ω))n∈Z are independent standard Bernoulli random vari-

ables (random signs). Then we have :

Proposition 2

For every p <∞, vω(x) ∈ Lp(T), almost surely.

Remark. The random function vω(x) and the deterministic function

v(x) =
∑
n∈Z

cn e
inx

have Fourier coefficients with the same absolute value.
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Almost sure improvements of the Sobolev embedding (sequel)

• The key point in the case of Bernoulli random variables is the large

deviation bound (based on the exponential method)

p
(
ω :

∣∣∣ ∑
n∈Z

cn hn(ω) einx
∣∣∣ > λ

)
≤ C exp

− cλ2∑
n |cn|

2
,

where C and c are positive constants independent of x ∈ T.

• The large deviation bound in turn implies∥∥∥ ∑
n∈Z

cn hn(ω) einx
∥∥∥
Lp(Ω)

≤ C√p
( ∑
n∈Z
|cn|2

)1
2 ,

with a constant C independent of x.

• With the last bound in hand, we can proceed as in the gaussian

case.
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No improvement of the Sobolev regularity in the gaussian case

• • Let again u ∈ L2(T) be a deterministic function. Suppose that

u /∈ Hs(T) for some s > 0.

• Consider again the randomised version of u given by

uω(x) =
∑
n∈Z

û(n) gn(ω) einx ,

where (gn(ω))n∈Z are independent from NC(0,1).

Proposition 3

uω(x) /∈ Hs(T), almost surely.

Proof. We have that the event

{ω : ‖uω‖Hs <∞}

belongs to the asymptotic σ-algebra obtained from the independent

σ-algebras generated from gn because the property ‖u‖Hs < ∞ de-

pends only on (1 − ΠN)u for every N ∈ N, where ΠN is the Dirichlet

projector.
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No improvement of the Sobolev regularity (sequel of the proof)

• Therefore by the Kolmogorov zero-one law, we have that

p({ω : ‖uω‖Hs <∞}) ∈ {0,1}.

• We suppose that the last probability is 1 and we look for a contra-

diction. If the probability is one then by the dominated convergence

almost surely

lim
N→∞

∫
Ω
e−‖πNuω‖

2
Hs dp(ω) =

∫
Ω
e−‖uω‖

2
Hs dp(ω) > 0 . (4)

• We will show that

lim
N→∞

∫
Ω
e−‖πNuω‖

2
Hs dp(ω) = 0

which will be in a contradiction with (4).

• Using the independence, we can write∫
Ω
e−‖πNuω‖

2
Hs dp(ω) =

∏
|n|≤N

∫
R2
e−|û(n)|2(x2+y2)〈n〉2se−(x2+y2)dxdy

π
.
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No improvement of the Sobolev regularity (sequel of the proof)

• Now, if we set

θ :=
∫
x2+y2≤1

e−(x2+y2)dxdy

π
∈ (0,1)

and we have∫
R2
e−|û(n)|2(x2+y2)〈n〉2se−(x2+y2)dxdy

π

≤ θ +
∫
x2+y2>1

e−|û(n)|2〈n〉2se−(x2+y2)dxdy

π

≤ θ + e−|û(n)|2〈n〉2s(1− θ) = 1− (1− θ)(1− e−|û(n)|2〈n〉2s) .

• Now, we observe that

lim
N→∞

∑
|n|≤N

(1− e−|û(n)|2〈n〉2s) =∞

because

lim
N→∞

∑
|n|≤N

〈n〉2s|û(n)|2 =∞

by assumption. This completes the proof.
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Products in Sobolev spaces of negative indexes

• Consider the random series :

uω(x) =
∑
n∈Z

gn(ω)

〈n〉α
einx,

1

4
< α <

1

2
,

with gn as in the previous discussion.

Proposition 4

We have that a.s. uω ∈ Hσ(T), σ < α− 1
2 but a.s. uω /∈ Hα−1

2(T).

Proof. We can write for N < M∥∥∥∥ ∑
N≤|n|≤M

einx
gn(ω)

〈n〉α

∥∥∥∥2

L2(Ω;Hσ(T))
'

∑
N≤|n|≤M

〈n〉2σ

〈n〉2α

which tends to zero as N →∞, provided

σ < α−
1

2
.

This completes the proof.
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Products in Sobolev spaces of negative indexes (sequel)

The random distribution

uω(x) =
∑
n∈Z

gn(ω)

〈n〉α
einx,

1

4
< α <

1

2

belongs to a Sobolev space of negative regularity and therefore it is

hard to define an object like |uω(x)|2. For example, thanks to Parseval,

the zero Fourier coefficient of |uω(x)|2 should be

∑
n∈Z

|gn(ω)|2

〈n〉2α

which is a.s. divergent. However, it turns out that the zero Fourier

coefficient is the only obstruction and it is possible, after a renormal-

isation, to define |uω|2 and even to compute its Sobolev regularity.
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Products in Sobolev spaces of negative indexes

• Fix σ < α− 1
2 (close to α− 1

2). Consider the partial sums

uω,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
einx ∈ C∞(T)

and write

|uω,N(x)|2 =
∑
|n|≤N

|gn(ω)|2

〈n〉2α
+

∑
n1 6=n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉α〈n2〉α
ei(n1−n2)x.

• The first term (the zero Fourier coefficient) contains all the singu-

larity while the second has an a.s. limit in H2σ(T).
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Products in Sobolev spaces of negative indexes

• Consequently, we set

cN := E
( ∑
|n|≤N

|gn(ω)|2

〈n〉2α

)
= E(|uω,N(x)|2) =

∑
|n|≤N

2

〈n〉2α
∼ N1−2α ,

and we define the renormalised partial sums

|uω,N(x)|2−cN =
∑
|n|≤N

|gn(ω)|2 − 2

〈n〉2α
+

∑
n1 6=n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉α〈n2〉α
ei(n1−n2)x.

• Thanks to the independence of gn we have

E
(∣∣∣∣ ∑
|n|≤N

|gn(ω)|2 − 2

〈n〉2α

∣∣∣∣2) =
∑
|n|≤N

4

〈n〉4α
,

which has a limit as N →∞ when α > 1/4.
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Products in Sobolev spaces of negative indexes

• Another use of the independence yields that

E
(∥∥∥∥ ∑

n1 6=n2
|n1|,|n2|≤N

gn1(ω)gn2(ω)

〈n1〉α〈n2〉α
ei(n1−n2)x

∥∥∥∥2

H2σ

)

is bounded by

C
∑
n1,n2

〈n1 − n2〉4σ

〈n1〉2α〈n2〉2α
.

The last sum is convergente as far as −4σ+4α > 2, which is equivalent
to our assumption σ < α− 1

2. Hence we proved that

Proposition 5

The sequence (
|uω,N(x)|2 − cN

)
N≥1

has a limit in L2(Ω;H2σ(T)). This limit is by definition the renormal-
isation of |uω|2.
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Remarks

• Using more involved arguments, we can also show the almost sure

convergence in the Sobolev space H2σ(T) of the sequence(
|uω,N(x)|2 − cN

)
N≥1

.

• Since σ < 0 the norm in H2σ(T) is weaker than in Hσ(T) (where

uω(x) is defined).

• Informally : the square of the modulus of an element of Hσ is in

H2σ, after a renormalisation.

• This is a remarkable probabilistic phenomenon, in the heart of the

study of evolution partial differential equations in the presence of

randomness in Sobolev spaces of negative indexes.
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Remarks (sequel)

• Again, we can replace the gaussians with much more general random

variables.

• We can also replace the sequence

1

〈n〉α

with a more general sequence (cn), i.e. we can consider∑
n∈Z

cn gn(ω) einx

instead of ∑
n∈Z

gn(ω)

〈n〉α
einx

but I am not aware of the optimal regularity of the renormalised square

in function of the sequence (cn).
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Products in Sobolev spaces of negative indexes on manifolds

• Let (M, g) be a compact riemannian boundaryless manifold of dimen-

sion 2 and (ϕn)n≥0 be an orthonormal basis of the Laplace-Beltrami

operator −∆g with corresponding increasing eigenvalues (λ2
n)n≥0.

• We suppose that ϕn are real valued.

• Consider the random series :

uω(x) =
∞∑
n=0

gn(ω)

〈λn〉
ϕn(x)

with gn as in the previous discussion but this time real valued.

• The process uω(x) is essentially the Gaussian Free Field (GFF) on

the manifold M .

• Again, we ask the question : Can we define |uω(x)|2 ?

18



Products in Sobolev spaces of negative indexes on manifolds

• Let us first compute the Sobolev regularity of the GFF. Thanks to

the Weyl law, we know that λn ∼ n1/2 and therefore

‖uω(x)‖2
L2(Ω;Hs(M)) =

∞∑
n=0

〈λn〉2s

〈λn〉2
∼
∞∑
n=1

ns−1 .

Therefore the GFF is missing L2 and one may show that it misses a.s.

L1 too. It is however in the negative Sobolev spaces Hs(M), s < 0.

• Consider again the truncated series

uω,N(x) =
∑

λn≤N

gn(ω)

〈λn〉
ϕn(x)

which is almost surely a C∞(M) function.
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Products in Sobolev spaces of negative indexes on manifolds

• Write

|uω,N(x)|2 =
∑

λn≤N

|gn(ω)|2|ϕn(x)|2

〈λn〉2
+

∑
n1 6=n2

λn1,λn2≤N

gn1(ω)gn2(ω)

〈λn1〉〈λn2〉
ϕn1(x)ϕn2(x) := IN + IIN .

• We have that IIN converges in L2(Ω;Hs(M)) for every s < 0 and

again the diagonal term IN contains the singular contribution.
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Products in Sobolev spaces of negative indexes on manifolds

• We have that

E(IN) =
∑

λn≤N

|ϕn(x)|2

〈λn〉2

• Thanks to Hörmander (1968)∑
λn≤λ

|ϕn(x)|2 = cλ2 + r(λ, x), sup
λ≥1

sup
x∈M

λ−1|r(λ, x)| <∞.

• Therefore, if we set

CN(x) =
∑

λn≤N

|ϕn(x)|2

〈λn〉2

then we have that there are two positive independent of x constants

c1 and c2 such that

c1 log(N) ≤ CN(x) ≤ c2 log(N).
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Products in Sobolev spaces of negative indexes on manifolds

Proposition 6

The sequence (|uω,N(x)|2 − CN(x))N≥1 converges in L2(Ω;Hs(M)),

s < 0.

Proof. We first study the convergence of

IIN =
∑

n1 6=n2
λn1,λn2≤N

gn1(ω)gn2(ω)

〈λn1〉〈λn2〉
ϕn1(x)ϕn2(x).

• We need to evaluate

‖(1−∆g)
s/2IIN‖2L2(Ω×M) =

∫
M

∑
n1 6=n2

λn1,λn2≤N

|(1−∆g)s/2(ϕn1(x)ϕn2(x))|2

〈λn1〉2〈λn2〉2
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Products in Sobolev spaces of negative indexes on manifolds

• Next, we can write

(1−∆g)
s/2(ϕn1(x)ϕn2(x)) =

∞∑
n=0

〈λn〉2sϕn(x)γ(n, n1, n2),

where

γ(n, n1, n2) =
∫
M
ϕn1(x)ϕn2(x)ϕn(x).

• Therefore

‖(1−∆g)
s/2IIN‖2L2(Ω×M) =

∞∑
n=0

∑
n1 6=n2

λn1,λn2≤N

|γ(n, n1, n2)|2

〈λn1〉2〈λn2〉2〈λn〉ε

where ε = −2s > 0.
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Products in Sobolev spaces of negative indexes on manifolds

• After performing dyadic decompositions, we need to evaluate the
quantity

Q :=
∑

λn1∼L1

∑
λn2∼L2

∑
λn∼L

|γ(n, n1, n2)|2

〈λn1〉2〈λn2〉2〈λn〉ε

where L1, L2 and L are dyadic integers.
• By a symmetry between L1 and L2, we can suppose that L1 ≥ L2.
• If L ≤ L1, we write

L2
1L

2
2L

ε Q .
∑
λn∼L

∑
λn2∼L2

∫
M

(ϕn(x)ϕn2(x))2 dx

and by the Hörmander theorem

L2
1L

2
2L

ε Q . L2L2
2

we can conclude because

L2L2
2

L2
1L

2
2L

ε
≤

1

Lε1
is summable over the dyadic integers L, L1, L2 such that L,L2 ≤ L1.
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Products in Sobolev spaces of negative indexes on manifolds

• If L ≥ L1, we write

L2
1L

2
2L

ε Q .
∑

λn1∼L1

∑
λn2∼L2

∫
M

(ϕn1(x)ϕn2(x))2 dx

and by the Hörmander theorem

L2
1L

2
2L

ε Q . L2
1L

2
2

we can conclude because

L2
1L

2
2

L2
1L

2
2L

ε
≤

1

Lε

is summable over the dyadic integers L, L1, L2 such that L1, L2 ≤ L.

• This ends the analysis of IIN .
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Products in Sobolev spaces of negative indexes on manifolds

• In the study of the convergence of IN − CN(x), we are reduced to

the convergence of the quantity

ĨN :=
∑

λn≤N

(|gn(ω)|2 − 1)|ϕn(x)|2

〈λn〉2
.

We can write

‖ĨN‖2L2(Ω×M) = C
∫
M

∑
λn≤N

|ϕn(x)|4

〈λn〉4
.

• By the Hörmander theorem and the bound

sup
x∈M

|ϕn(x)| ≤ Cλ
1
2
n

we get ∑
λn∼L

|ϕn(x)|4

〈λn〉4
. L−4L

∑
λn∼L

|ϕn(x)|2 . L−1

which concludes the evaluation of IN . This completes the proof.
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The nonlinear wave equation

Theorem 7 (classical)

• For every (u0, u1) ∈ H1(T3) × L2(T3) there exists a unique global

solution of

(∂2
t −∆)u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x)

in the class (u, ∂tu) ∈ C(R;H1(T3)× L2(T3)) .

• If in addition (u0, u1) ∈ Hs(T3)×Hs−1(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)×Hs−1(T3)) .

The dependence with respect to the initial data is continuous.

• The local in time part of Theorem 7 can be extended to the case

(u0, u1) ∈ Hs(T3)×Hs−1(T3), s ≥ 1/2, and the global in time part to

s > 13/18 (Kenig-Ponce-Vega, Gallagher-Planchon, Bahouri-Chemin,

Roy).

• We conjecture that Theorem 7 remains true for s ≥ 1/2 (proved

recently by Dodson in the radial case of R3).
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Limit of the deterministic methods

Theorem 8 (ill-posedness)

Let s ∈ (0,1/2) et (u0, u1) ∈ Hs(T3) × Hs−1(T3). There exists a

sequence

uN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆)uN + u3

N = 0

with

lim
N→+∞

‖(uN(0)− u0, ∂tuN(0)− u1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→+∞

sup
0≤t≤T

‖uN(t)‖Hs(T3) = +∞.

• The proof is based on an idea introduced by Gilles Lebeau and

further developed by Christ-Colliander-Tao, Burq-Tz., Xia.
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Solving the equation by probabilistic methods

• We can ask whether some form of well-posedness survives for initial

data in

Hs(T3)×Hs−1(T3), s < 1/2. (5)

• The answer of this question is positive if we endow the space (5)

with a non degenerate probability measure such that we have the ex-

istence, the uniqueness, and a form of continuous dependence almost

surely with respect to this measure.
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Choice of the measure

• We will choose the initial data among the realisations of the follow-

ing random series

uω0(x) =
∑
n∈Z3

gn(ω)

〈n〉α
ein·x , uω1(x) =

∑
n∈Z3

hn(ω)

〈n〉α−1
ein·x . (6)

Here {gn}n∈Z3 et {hn}n∈Z3 are two families of independent random

variables conditioned by gn = g−n and hn = h−n, so that uω0 and uω1
are real valued.

• In addition, we suppose that for n 6= 0, gn and hn are complex gaus-

sians from NC(0,1), and that g0 and h0 are standard real gaussians

from N (0,1).

• We can define the measure µα as the image measure by the map

ω 7−→ (uω0, u
ω
1)

• Question : µα is a measure on which space ?

30



On the gaussian measure µα

• We can write for N < M∥∥∥∥ ∑
N≤|n|≤M

ein·x
gn(ω)

〈n〉α

∥∥∥∥2

L2(Ω;Hs(T3))
'

∑
N≤|n|≤M

〈n〉2s

〈n〉2α

which tends to zero as N →∞, provided

s < α−
3

2
.

• Therefore ∑
n∈Z3

einx
gn(ω)

〈n〉α
∈ L2(Ω;Hs(T3)) .

• A similar analysis applies to∑
n∈Z3

hn(ω)

〈n〉α−1
ein·x .

31



On the gaussian measure µα (sequel)

• We conclude that the map

ω 7−→
( ∑
n∈Z3

gn(ω)

〈n〉α
ein·x ,

∑
n∈Z3

hn(ω)

〈n〉α−1
ein·x

)

defines a probability measure on Hs(T3)×Hs−1(T3) for s < α− 3
2.

• Moreover

µα(Hα−3
2(T3)×Hα−5

2(T3)) = 0 .
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Reformulation of the ill-posedness result

Theorem 9

Let α ∈ (3/2,2) and 0 < s < α−3/2. For almost every ω, there exists

a sequence

uωN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆)uωN + (uωN)3 = 0

with

lim
N→+∞

‖(uωN(0)− uω0, ∂tu
ω
N(0)− uω1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→+∞

sup
0≤t≤T

‖uωN(t)‖Hs(T3) = +∞.

We can however prove the following result:
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Theorem 10 (Burq-Tz. (2010))

Let α ∈ (3/2,2) and 0 < s < α− 3/2. Define (thanks to the classical
well-posedness result) the sequence (uN)N≥1 of solutions of

(∂2
t −∆)u+ u3 = 0 (7)

with C∞ initial data

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x .

The sequence (uN)N≥1 converges almost surely as N →∞ in C(R;Hs(T3))
to a (unique) limit u which satisfies (7) in the distributional sense.

• The type of the approximation of the initial data is crucial
when we prove probabilistic well-posedness.
• Even if we consider the approximation of the initial data by Fourier
truncation there is dense set of pathological data such that the state-
ment of Theorem 10 does not hold (we discuss this in the next slide).
• We can prove uniqueness in a suitable functional framework.
• We can consider more general randomisations (this fact had an
important impact in the field).
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The pathological set

• The result by Burz-Tz. provides a nice dense set Σ of initial data

such that for good approximations we get nice global solutions (but

for bad approximations we get divergent sequences !).

• On the other hand we also have :

Theorem 11 (Sun-Tz. 2020)

Let 0 < s < 1
2. Then there is a dense set S ⊂ Hs(T3)×Hs−1(T3) such

that for every (f, g) ∈ S, the sequence (uN)N≥1 of (smooth) solutions

of

(∂2
t −∆)u+ u3 = 0,

with data

u0(x) =
∑
|n|≤N

f̂(n)ein·x , u1(x) =
∑
|n|≤N

ĝ(n)ein·x

do not converge. More precisely, for every T > 0,

lim
N→∞

‖uN(t)‖L∞([0,T ];Hs(T3)) = +∞ .
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A remark

• The pathological set S contains a dense Gδ set of Hs ×Hs−1.

• In a very nice recent work, Camps-Gassot proved the existence of

a pathological set in the more involved case of NLS.
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Going beyond the Burq-Tz. result

Theorem 12 (Oh-Pocovnicu-Tz. (2019))

Let α ∈ (5
4,

3
2] and s < α− 3/2. There is divergent sequence (cN)N≥1

such that if we denote by (uωN)N≥1 the solution of

∂2
t u−∆u− cNu+ u3 = 0,

with initial data given by

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x

then for almost every ω there exists Tω > 0 such that (uωN)N≥1 con-

verges in C([−Tω, Tω];Hs(T3)).

• A triviality result motivating the introduction of cN can also be

obtained.
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Remarks

• The result by Oh-Pocovnicu-Tz. was the first step in the study of

the nonlinear wave equation in Sobolev spaces of negative indexes.

It was very recently improved to α ∈ (1, 3
2] in an impressive work by

Bringmann (using techniques developed by Gubinelli et al.).

• A recent work by Bringmann-Deng-Nahmod-Yue on the Gibbs mea-

sures for 3d NLS provides a first step to the case α = 1 (the singular

part of the support of the associated Gibbs measure).

• A problem that I am very interested in: Can we globalize the so-

lutions obtained in the results of Oh-Pocovnicu-Tz. and Bringmann.
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Invariant measures for the nonlinear Schrödinger equation

(i∂t + ∆)u− |u|2u = 0, u(0, x) = u0(x) x ∈ T2. (8)

• (8) is a Hamiltonian PDE. Therefore

E(u) =
∫
T2

(
|∇xu(t, x)|2 + |u(t, x)|2 +

1

2
|u(t, x)|4

)
dx

is a (formally) conserved quantity for (8).
• The Gibbs measure associated with (8) is a renormalisation of the
completely formal object

exp(−E(u))du .

• The measure obtained by this renormalisation is absolutely con-
tinuous with respect to the gaussian measure induced by

uω0(x) =
∑
n∈Z2

gn(ω)

〈n〉
ein·x

where {gn}n∈Z2 is a family of independent (complex valued) gaussians
from NC(0,1) (notice that this is the same object as the one we considered

previously on an arbitrary manifold).
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Theorem 13 (Bourgain (1996))

• Let (uωN)N≥1 be the sequence of solutions of

(i∂t + ∆)u− |u|2u = 0 (9)

with C∞ initial data given by

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉
ein·x .

For every s < 0, the sequence(
exp

(
it

2π2
‖uωN(t)‖2

L2

)
uωN(t)

)
N≥1

converges almost surely in C(R;Hs(T2)) to a limit which satisfies a

renormalised version of (9).

• Moreover, the Gibbs measure is invariant under the resulting flow.
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Remarks

• The statement of the results by Bourgain and Burq-Tz. are simi-

lar. A notable difference is that in the Bourgain theorem, in order to

obtain a limit one needs to reanormalise the sequence of approximate

solutions (uωN)N≥1. Moreover in Bourgain’s theorem the randomisa-

tion is ”rigid”.

• We can formulate the Bourgain theorem in the spirit of the result

by Oh-Pocovnicu-Tz. More precisely, one can prove the convergence

of the solutions of

i∂tu+ ∆u+ cNu− |u|2u = 0

with data

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉
ein·x ,

where (cN(ω))N≥1 is a sequence of real numbers almost surely diver-

gent to +∞.
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Singular stochastic PDE’s

• The set of problems considered in the previous slides is close to

the analysis of parabolic PDE’s in the presence of a singular random

source term (noise).

• The closest to the previously considered models is the nonlinear

heat equation

∂tu−∆u+ u3 = ξ, u(0, x) = 0 , x ∈ T3. (10)

• Here ξ is the space-time white noise on [0,∞[×T3. It is the source

term ξ which represents the singular randomness in (10) (in the previous

slides it was the low regularity random initial data which represented the singular

randomness).

• The white noise on [0,∞[×T3 may be written as

ξ =
∑
n∈Z3

β̇n(t)ein·x, (11)

where βn are independent Brownian motions, conditioned by βn = β−n
(β0 is real and for n 6= 0, βn is with values in C).
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Singular stochastic PDE’s (sequel)

• For N � 1, an approximation of ξ by smooth functions is given by

ξN(t, x) = ρN ?ξ where ρN(t, x) = N5ρ(N2t,Nx) with ρ a test function

with integral 1 on [0,∞[×T3.

Theorem 14 (Hairer (2014), Mourrat-Weber (2018))

There is a sequence (cN)N≥1 of positive numbers, divergent as N →∞
such that if we denote by uN the solution of

∂tuN −∆uN − cNuN + u3
N = ξN , u(0, x) = 0

then (uN)N≥1 converges in suitable Hölder type spaces as N →∞.

• The initial data u(0, x) can be different from zero : it suffices that

it belongs to a suitable functional framework.
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Remarks

• The result remains true for a noise ξ defined by

ξ =
∑
m∈Z

∑
n∈Z3

gm,n(ω)eimt ein·x,

where {gm,n}(m,n)∈Z4 is a family of independent complex gaussians

conditioned so that ξ is real values (white noise on T× T3).

• The two dimensional case is treated in the work by Da Prato-

Debussche (2003).

• There are other parabolic PDE’s for which one can obtain results

in similar spirit, the most popular being probably the KPZ equation.
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On the structure of the proofs

• The proofs of the previously described results follow the same
scheme.

• First, we construct local in time solutions. Then we use a global in-
formation which is either an invariant measure or an energy estimate
in order to get global in time solutions.

• In order to construct the solutions locally in time, we look for the
solution in the form

u = u1 + u2,

where u1 contains the singular part of the solution.
• Using probabilistic arguments, close to the ones in the beginning of
the lectures, we prove that u1 has properties better than the properties
given by deterministic methods. All probabilistic part of the argument
is in this part of the analysis.
• In the proof of the result by Burq-Tz. we use a.s. improvements
of the Sobolev embedding while all the other results use products in
Sobolev spaces of negative indexes.
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On the structure of the proofs (sequel)

•We then solve the problem for u2 by purely deterministic arguments.

Here the nature of the equation becomes even more important. In

the case of the heat equation, the basic tool is the elliptic regularity

while for the other equations we exploit the time oscillations in a

crucial way (these oscillations are captured by the Bourgain spaces,

for instance).

• The passage from local to global solutions in the result by Bourgain

uses an invariant measure as a global control on the solutions. In the

result by Burq-Tz. the globalisation is done by energy estimates. It

is remarkable that in the context of the nonlinear heat equation these

two techniques are also used to globalise the solutions.
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A further remark

• In the work by Burq-Tz. we allow more general randomisations

compared to Bourgain’s work. However, the proof does not say any-

thing about the nature of the transported by the flow initial measure

while in the work by Bourgain the initial gaussian measure is quasi-

invariant under the flow.

• This fact motivated recent work on quasi-invariant measures for

nonlinear dispersive equations. We will come back to this.
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• But let us come back to the Cauchy problem∂2
t u−∆u+ u3 = 0

(u, ∂tu)|t=0 = (u0, u1) ∈ Hs(T3),

where u : R× T3 → R and Hs(T3) = Hs(T3)×Hs−1(T3).

• The initial data is chosen among the realisations of the random

series

uω0 =
∑
n∈Z3

gn(ω)

〈n〉α
ein·x and uω1 =

∑
n∈Z3

hn(ω)

〈n〉α−1
ein·x,

where the scalar random variables gn and hn satisfy suitable assump-

tions.

• Recall that µα is the non degenerate measure on Hs(T3),

0 < s < α− 3/2, induced by the map

ω 7−→ (uω0, u
ω
1) .
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Theorem 15 (Burq-Tz. (2010))

Let α > 3
2 and s < α− 3

2. Let {uN}N∈N be a sequence of the smooth

global solutions to

∂2
t u−∆u+ u3 = 0 (12)

with the following random C∞-initial data:

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x and uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x .

Then, as N → ∞, uN converges almost surely to a (unique) limit u

in C(R;Hs(T3)), satisfying (12) in a distributional sense.
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Another formulation

Theorem 16 (existence and uniqueness)

Let α > 3
2 and s < α−3

2. There exists a full µα measure set Σ ⊂ Hs(T3)

such that for every (u0, u1) ∈ Σ, there exists a unique global solution

u of the non linear wave equation

(∂2
t −∆)u+ u3 = 0, (u(0), ∂tu(0)) = (u0, u1)

satisfying

(u(t), ∂tu(t)) ∈
(
S(t)(u0, u1), ∂tS(t)(u0, u1)

)
+C(Rt;H1(T3)× L2(T3)).

Furthermore, if we denote by

Φ(t)(u0, u1) ≡ (u(t), ∂tu(t))

the flow thus defined, the set Σ is invariant by the map Φ(t), namely

Φ(t)(Σ) = Σ, ∀ t ∈ R.
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Theorem 17 (Oh-Pocovnicu-Tz. (2018))

Let 5
4 < α ≤ 3

2 and s < α − 3
2. There exists a divergent sequence

{βN}N∈N of positive numbers such that the following holds true.

There exist small T0 > 0 and positive constants C, c, κ such that

for every T ∈ (0, T0], there exists a set ΩT of complemental probabil-

ity smaller than C exp(−c/Tκ) such that if we denote by {uN}N∈N the

smooth global solutions to∂2
t uN −∆uN + u3

N − βNuN = 0

(uN , ∂tuN)|t=0 = (uω0,N , u
ω
1,N),

where the random initial data (uω0,N , u
ω
1,N) is given by the truncated

Fourier series

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x

then for every ω ∈ ΩT , the sequence {uN}N∈N converges to some

(unique) limiting distribution u in C([−T, T ];Hs(T3)) as N →∞.
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Probabilistic Strichartz estimates

Theorem 18

Let α > 3/2. For every T > 0 and p1 ∈ [1,∞), p2 ∈ [2,∞],

‖S(t)(u0, u1)‖Lp1([0,T ];Lp2(T3)) <∞, µα− almost surely.

• Here S(t)(u0, u1) denotes the solution of the linear wave equation

with data (u0, u1).

• Recall that µα is a non degenerate measure on Hs(T3),

0 < s < α − 3/2, where α measures the decay of the Fourier coeffi-

cients of the random series defining the measure µα.

• The proof of Theorem 18 is in the spirit of the almost sure im-

provement of the Sobolev embedding we already discussed.
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The Picard iteration scheme

• For small times depending on (u0, u1), we can hope to represent

the solution of the nonlinear wave equation as

u =
∞∑
j=1

Qj(u0, u1),

where Qj is homogeneous of order j in (u0, u1). We have

Q1(u0, u1) = S(t)(u0, u1),

Q2(u0, u1) = 0,

Q3(u0, u1) = −
∫ t

0

sin((t− τ)
√
−∆)√

−∆

(
S(τ)(u0, u1)

)3
dτ,

etc. We have that µα a.s. Q1 /∈ Hσ for σ ≥ α− 3
2. However, using the

probabilistic Strichartz estimates, we have that for T > 0,

‖Q3(u0, u1)‖L∞T H1(T3) . ‖S(t)(u0, u1)‖3
L3
TL

6(T3)
<∞, µα− almost surely.

• Therefore the second non trivial term in the formal expansion defin-

ing the solution is µα a.s. more regular than the initial data !
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The strategy

• The strategy will therefore be to write the solution of the nonlinear

wave equation as

u = Q1(u0, u1) + v,

where v ∈ H1 and solve the equation for v by a deterministic method,

exploiting the typical properties of Q1(u0, u1)

• In the case of the cubic nonlinearity the deterministic analysis used

to solve the equation for v is particularly simple, it is in fact very

close to the analysis in the proof of the classical H1 well-posedness

result. For more complicated problems the analysis of the equation

for v could involve more advanced deterministic arguments.
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Proof of the existence and uniqueness result

Proposition 19 (Local well-posedness)

Consider the problem

(∂2
t −∆)u+ (f + u)3 = 0 . (13)

There exists a constant C such that for every time interval I = [a, b]

of size 1, every Λ ≥ 1, every

(u0, u1, f) ∈ H1 × L2 × L3(I, L6)

satisfying

‖u0‖H1 + ‖u1‖L2 + ‖f‖3
L3(I,L6) ≤ Λ

there exists a unique solution on the time interval [a, a+ C−1Λ−2] of

(13) with initial data

u(a, x) = u0(x), ∂tu(a, x) = u1(x) .

• The proof is very similar to the proof of the classical local well-

posedness result.
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Proof of the existence and uniqueness result (sequel)

• We search the solution u under the form

u(t) = S(t)(u0, u1) + v(t)

• Then v solves

(∂2
t −∆)v+ (S(t)(u0, u1) + v)3 = 0, v |t=0= 0, ∂tv |t=0= 0. (14)

• Thanks to the probabilistic Strichartz estimates, we have that

µα-almost surely,

g(t) = ‖S(t)(u0, u1)‖3
L6(T3) ∈ L

1
loc(Rt),

f(t) = ‖S(t)(u0, u1)‖L∞(T3) ∈ L
1
loc(Rt).

(15)

• The local existence for (14) follows from the local existence result

of the previous slide and the first estimate in (15).

• We also deduce from the local existence result that as long as the

H1 × L2 norm of (v, ∂tv) remains bounded, the solution v of (14)

exists.

56



Proof of the existence and uniqueness result (sequel)

• Set

E(v(t)) =
1

2

∫
T3

(
(∂tv)2 + |∇xv|2 +

1

2
v4
)
dx .

Using the equation solved by v, we now compute

d

dt
E(v(t)) =

∫
T3

(
∂tv∂

2
t v +∇x∂tv · ∇xv + ∂tv v

3
)
dx

=
∫
T3
∂tv

(
∂2
t v −∆v + v3

)
dx

=
∫
T3
∂tv

(
v3 − (S(t)(u0, u1) + v)3

)
dx.

• Now, we use the Cauchy-Schwarz inequality.
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Proof of the existence and uniqueness result (sequel)

• Now, using the Cauchy-Schwarz inequality, we write

d

dt
E(v(t)) ≤ C

(
E(v(t))

)1/2
‖v3 − (S(t)(v0, v1) + v)3‖L2(T3) .

• Using the Hölder inequality, we can estimate right hand-side by

C
(
E(v(t))

)1/2
(
‖S(t)(u0, u1)‖3

L6(T3) + ‖S(t)(u0, u1)‖L∞(T3)‖v
2‖L2(T3)

)
• But

‖v2‖L2(T3) ≤ C
(
E(v(t))

)1/2

and consequently, we get the key bound

d

dt
E(v(t)) ≤ C

(
E(v(t))

)1/2
(
g(t) + f(t)

(
E(v(t))

)1/2
)
.
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Proof of the existence and uniqueness result (sequel)

• Therefore, according to the Gronwall inequality and

g(t) = ‖S(t)(u0, u1)‖3
L6(T3) ∈ L

1
loc(Rt), µα − a.s.

f(t) = ‖S(t)(u0, u1)‖L∞(T3) ∈ L
1
loc(Rt), µα − a.s.

we deduce that v exists globally in time.

• This completes the proof of the existence and the uniqueness.
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The invariant set

• Define the sets

Θ ≡
{

(u0, u1) ∈ Hs : ‖S(t)(u0, u1)‖3
L6(T3) ∈ L

1
loc(Rt),

‖S(t)(u0, u1)‖L∞(T3) ∈ L
1
loc(Rt)

}
and

Σ ≡ Θ +H1.

• Then Σ is of full µα measure since so is Θ.

• The set Σ is invariant under the dynamics.

• We next turn to the result with Oh-Pocovnicu.
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Deterministic well-posedness in Hs(T3), s ≥ 1/2

• The main tool are the Strichartz estimates that we discuss below.

• Let L = ∂2
t −∆ + 1. We write

L−1 = (∂2
t −∆ + 1)−1

to denote the Duhamel integral operator

L−1F (t) :=
∫ t

0

sin((t− t′)〈D〉)
〈D〉

F (t′)dt′, 〈D〉 =
√
−∆ + 1.

• In other words, u := L−1(F ) is the solution to

Lu = F, (u, ∂tu)|t=0 = (0,0).
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The Strichartz estimates

• The most basic regularity property of L−1 is the ”wave regularity”
estimate:

‖L−1(F )‖L∞([−T,T ];Hs(T3)) . ‖F‖L1([−T,T ];Hs−1(T3)). (16)

• The Strichartz estimates are important extensions of (16).

Theorem 20

• Let 0 < T ≤ 1. Then, the following estimate holds:

‖L−1(F )‖L4([−T,T ]×T3) + ‖L−1(F )‖
L∞([−T,T ];H

1
2(T3))

. min
(
‖F‖

L1([−T,T ];H−
1
2(T3))

, ‖F‖
L

4
3([−T,T ]×T3)

)
.

• As a consequence (by duality) we also have that the solution of

Lu = 0, u(0) = u0, ∂tu(0) = u1

satisfies

‖u‖L4([−T,T ]×T3) + ‖u‖
L∞([−T,T ];H

1
2(T3))

.
(
‖u0‖

H
1
2

+ ‖u1‖
H
−1

2

)
.
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Closing the circle with a cubic nonlinearity in H1/2

• For T > 0, we denote by XT the closed subspace of C([−T, T ];H
1
2(T3))

endowed with the norm

‖u‖XT = ‖u‖
L∞([−T,T ];H

1
2(T3))

+ ‖u‖L4([−T,T ]×T3) .

• Then the Strichartz estimates imply that

‖L−1(u3)‖XT ≤ C‖u‖
3
XT

• By a fixed point argument in XT , the last estimate together with

the corresponding estimate for the free evolution can be easily trans-

formed into small data local well-posedness in H1/2(T3) of

Lu+ u3 = 0 .

• A very small variation yields large data local well-posedness in

Hs(T3), s > 1/2 (we need to lose a bit of regularity in order to remove

the smallness condition).
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The free random evolution

• Fix α ≤ 3
2. Recall that

L = ∂2
t −∆ + 1 .

• Denote by z1,N = z1,N(t, x, ω) the solution to

Lz1,N(t, x, ω) = 0

with the random initial data (uω0,N , u
ω
1,N) given by the truncated Fourier

series

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x .
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The free random evolution (sequel)

• Given t ∈ R, define gtn(ω) by

gtn(ω) := cos(t〈n〉) gn(ω) + sin(t〈n〉)hn(ω). (17)

• Then, we have

z1,N(t, x, ω) = cos(t〈∇〉)
(
z1,N(0, x, ω)

)
+

sin(t〈∇〉)
〈∇〉

(
∂tz1,N(0, x, ω)

)

=
∑
|n|≤N

gtn(ω)

〈n〉α
ein·x.

• Using the definitions of the Gaussian random variables {gn}n∈Z3

and {hn}n∈Z3, we see that {gtn}n∈Z3 defined in (17) forms a family

of independent standard complex-valued Gaussian random variables

conditioned that gtn = gt−n (in particular, gt0 is real-valued).
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The free random evolution (sequel)

• In the following, we discuss spatial regularities of various stochastic

terms for fixed t ∈ R. For simplicity of notation, we suppress the

t-dependence and discuss spatial regularities.

• It is easy to see that z1,N converges almost surely to some limit z1

in Hs1(T3) as N →∞, provided that

s1 < α−
3

2
.

• In particular, when α ≤ 3
2, z1,N has negative Sobolev regularity (in

the limiting sense) and thus (z1,N)2 and (z1,N)3 do not have well

defined limits (in any topology) as N → ∞ since it involves products

of two distributions of negative regularities.
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Giving a sense of the square and the cube in negative Sobolev spaces

• Let uN be the solution to the renormalized nonlinear wave equation

∂2
t uN −∆uN + u3

N − βNuN = 0

with the same truncated random initial data (uω0,N , u
ω
1,N). By writing

u as

uN = z1,N + vN ,

we see that the residual term vN = uN − z1,N satisfies the following

equation:

LvN + v3
N + 3z1,Nv

2
N + 3((z1,N)2 − σN)vN + ((z1,N)3 − 3σNz1,N) = 0

with zero initial data, where the parameter σN is defined by

σN :=
βN + 1

3
.
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Giving a sense of the square and the cube in negative Sobolev spaces

• The key point is that the terms

Z2,N := (z1,N)2 − σN and Z3,N := (z1,N)3 − 3σNz1,N

are “renormalizations” of (z1,N)2 and (z1,N)3.

• Here, by “renormalizations”, we mean that by choosing a suitable

renormalization constant σN , the terms Z2,N and Z3,N converge al-

most surely in suitable negative Sobolev spaces as N →∞.

• The regularity s1 < α− 3
2 of z1,N (in the limit) and a basic compu-

tation (as in the first lecture) show that if the expressions

Z2,N = (z1,N)2 − σN and Z3,N = (z1,N)3 − 3σNz1,N have any well de-

fined limits as N →∞, then their regularities in the limit are expected

to be

s2 < 2
(
α−

3

2

)
and s3 < 3

(
α−

3

2

)
,

respectively.
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Giving a sense of the square and the cube in negative Sobolev spaces

• In fact, by choosing the renormalization constant σN as

σN := E
[(
z1,N(t, x, ω)

)2]
,

we show that Zj,N , j = 2,3 converge in Hsj(T3) almost surely.

• The renormalization constant σN a priori depends on t, x but it turns

out to be independent of t and x. This fact can be seen by a direct

computation. It also follows from the stationarity (in both t and x)

of the stochastic process {z1,N(t, x)}(t,x)∈R×T3.

• We will also see that, for N � 1, σN behaves like ∼ N3−2α when

α < 3
2.
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The first Picard iteration ansatz

• We know that the deterministic Cauchy problem for

Lv + v3 = 0

is locally well-posed in Hs(T3) for s ≥ 1
2.

• Therefore, we may hope to solve the equation

LvN + v3
N + 3z1,Nv

2
N + 3((z1,N)2 − σN)vN + ((z1,N)3 − 3σNz1,N) = 0

uniformly in N ∈ N if we can ensure that the solution vN to the
following linear problem:

LvN + ((z1,N)3 − 3σNz1,N) = 0 (18)

with the zero initial data (vN , ∂tvN)|t=0 = (0,0) remains bounded in

H
1
2(T3) as N →∞.
• Using the wave-regularity, we see that the solution to (18) is almost

surely bounded in H
1
2(T3) uniformly in N ∈ N, provided

3

(
α−

3

2

)
+ 1 >

1

2
=⇒ α >

4

3
.

Therefore, α = 4
3 is the limit of the first Picard iteration ansatz.
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The second Picard iteration ansatz

• In order to go below the α = 4
3 threshold, a new argument is needed.

More precisely, we further decompose vN as

vN = z2,N + wN ,

where z2,N is the solution to the following equation:Lz2,N + ((z1,N)3 − 3σNz1,N) = 0

(z2,N , ∂tz2,N)|t=0 = (0,0).

• Thanks to the one degree of smoothing, we see that z2,N converges

to some limit in Hs(T3), provided that

s = s3 + 1 < 3
(
α−

3

2

)
+ 1
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The second Picard iteration ansatz (sequel)

• In terms of the original solution uN we have

uN = z1,N + z2,N + wN .

Note that z1,N +z2,N corresponds to the Picard second iterate for the

truncated renormalized equation.

• The equation for wN can now be written as

LwN+(wN+z2,N)3+3z1,N(wN+z2,N)2+3((z1,N)2−σN)(wN+z2,N) = 0,

with zero initial data.

• By using the second order expansion, we have eliminated the most

singular term Z3,N = (z1,N)3 − 3σNz1,N in the equation for vN .

• In the equation for wN , there are several source terms (namely,

purely stochastic terms independent of the unknown wN) and they

are precisely the quintic, septic, and nonic (i.e. degree nine) terms

added in considering the Picard third iterate.
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The second Picard iteration ansatz (sequel)

• It turns out that the most singular source term is the following

quintic term:

Z5,N := 3((z1,N)2 − σN)z2,N ,

where we recall that z2,N is the solution toLz2,N + ((z1,N)3 − 3σNz1,N) = 0,

(z2,N , ∂tz2,N)|t=0 = (0,0).

• As we already mentioned, the term Z2,N = (z1,N)2 − σN and the

second order term z2,N pass to the limits in Hs(T3) for s < 2(α − 3
2)

and s < 3(α− 3
2) + 1, respectively.

• In order to make sense of the product of Z2,N and z2,N by determin-

istic paradifferential calculus, we need the sum of the two regularities

to be positive, namely

2

(
α−

3

2

)
+ 3

(
α−

3

2

)
+ 1 > 0 =⇒ α >

13

10
.
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The second Picard iteration ansatz (sequel)

• Otherwise, i.e. for α ≤ 13
10, we will need to make sense of the product

of Z2,N and z2,N using stochastic analysis.

• In either case, when the second term in

Z5,N := 3((z1,N)2 − σN)z2,N ,

has positive regularity 3(α− 3
2) + 1 > 0, i.e. α > 7

6, we show that the

product

3((z1,N)2 − σN)z2,N

(in the limit) inherits the regularity from Z2,N = (z1,N)2−σN , allowing

us to pass to a limit in Hs(T3) for

s < 2

(
α−

3

2

)
.
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The equation for wN

• Once we are able to pass the term

Z5,N = 3((z1,N)2 − σN)z2,N ,

in the limit N →∞, the main issue in solving the equation for wN by

the deterministic Strichartz theory is to ensure that the solution of

Lw + 3((z1,N)2 − σN)z2,N = 0 (19)

with zero initial data remains bounded in H
1
2(T3) as N →∞.

• Using again one degree of smoothing under the wave Duhamel

operator, we see that the solution to (19) is almost surely bounded

in H
1
2(T3), provided

2

(
α−

3

2

)
+ 1 >

1

2
=⇒ α >

5

4
.

• This explains the restriction α > 5
4 in our result.
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The limit equation

• In the proof of our result, we apply the deterministic Strichartz

theory and show that wN converges almost surely to some limit w.

• Along with the almost sure convergence of z1,N and z2,N to some

limits z1 and z2, respectively, we conclude from the decomposition

uN = z1,N + z2,N + wN

that uN converges almost surely to

u := z1 + z2 + w .

• By taking a limit in the equation for wN , we see that w is almost

surely the solution toLw + (w + z2)3 + 3z1(w + z2)2 + 3Z2w + 3Z5 = 0

(w, ∂tw)|t=0 = (0,0),

where Z2 and Z5 are the limits of Z2,N and Z5,N , respectively.

• This equation for w may be seen as the limit equation for u−z1−z2.
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On the Bringmann improvement

• In his work allowing to treat α > 1 Bringmann uses a finer (the so

called para-control) ansatz by writing

uN = z1,N + z2,N +RN + wN ,

where RN has the same regularity as z2,N and some high frequency

structure (as I explained on the blackboard in the previous lecture).

• More importantly, it exploits multi-linear smoothing effects in the

stochastic objects.

• Oh-Wang-Zine succeeded to get the α > 1 result without using the

para-control ansatz.

• For α > 1 the estimates on the random objects become thus much

more involved but one still uses the same basic probabilistic effects

as in the beginning of the lectures.

77



Quasi-invariant measures

• Let Td = (R/(2πZ))d be a torus of dimension d.

• If f : Td → C is a C∞ function then for every x ∈ Td,

f(x) =
∑
n∈Zd

f̂(n) ein·x,

where

f̂(n) = (2π)−d
∫
Td
f(x)e−in·xdx

then

‖f‖2
Hs(Td) =

∑
n∈Zd
〈n〉2s|f̂(n)|2 .

• The norm Hs is induced from a natural scalar product

(f, g)s =
∑
n∈Zd
〈n〉2sf̂(n)ĝ(n)

which makes Hs(Td) a Hilbert space.
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The gaussian measure µs

• We wish to define a gaussian measure of the form

Z−1 e−‖u‖
2
Hs du

as a measure on a suitable functional space.

• Formally

Z−1 e−‖u‖
2
Hs du = Z−1 exp

(
−

∑
n∈Zd
〈n〉2s|û(n)|2

) ∏
n∈Zd

d û(n)

and the last expression makes think about the well defined object∏
n∈Z

Z−1
n exp

(
− 〈n〉2s|û(n)|2

)
d û(n),

where we formally wrote

Z−1 =
∏
n∈Z

Zn
−1 .
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The gaussian measure µs (sequel)

• Therefore, we can define the measure µs

Z−1 e−‖u‖
2
Hs du

as the image measure by the map

ω 7−→
∑
n∈Zd

einx
gn(ω)

〈n〉s
,

where (gn(ω))n∈Zd are i.i.d. complex gaussian random variables with

mean 0 and variances 1, on a probability space (Ω,F , p).

• Question : µs is a measure on which space ?
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The gaussian measure µs (sequel)

• We can write for N < M∥∥∥∥ ∑
N≤|n|≤M

einx
gn(ω)

〈n〉s

∥∥∥∥2

L2(Ω;Hσ(Td))
'

∑
N≤|n|≤M

〈n〉2σ

〈n〉2s

which tends to zero as N →∞, provided

σ < s−
d

2
.

• Therefore ∑
n∈Zd

einx
gn(ω)

〈n〉s
∈ L2(Ω;Hσ(Td)) .
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The gaussian measure µs (sequel)

• We conclude that the map

ω 7−→
∑
n∈Zd

einx
gn(ω)

〈n〉s

defines a probability measure on Hσ(Td), σ < s− d
2. In addition

µs(H
s−d2(Td)) = 0 .

• In particular

µs(H
s(Td)) = 0 .

• In this constriction Hs(Td) is canonical but Hσ(Td) is not, it may be

replaced for instance by Wσ,∞(Td).
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The Cameron-Martin theorem

• Question : How behaves µs under transformations ?

Theorem 21 (Cameron-Martin 1944)

Let f ∈ Hσ(Td), σ < s − d
2 and let µf be the image of µs under the

map from Hσ(Td) to Hσ(Td) defined by

u 7−→ f + u .

Then µf is absolutely continuous with respect to µs if and only if

f ∈ Hs(Td).

• Recalling that formally

dµs(u) = Z−1 e−‖u‖
2
Hs du

we may expect that

dµf(u)

dµs(u)
= e−‖f‖

2
Hs−2(u,f)s ,

where (·, ·)s stands for the Hs scalar product.

83



Proof of the Cameron-Martin theorem for µs

• Let f ∈ Hs(Td). Since we expect that the Radon-Nykodim derivative
is exp

(
−‖f‖2Hs−2(u, f)s

)
the whole issue is to show that (u, f)s <∞,

µs almost surely which is equivalent to∑
n∈Zd
〈n〉sf̂(n) gn(ω) <∞, a.s.

which directly results directly from the independence and f ∈ Hs(Td).
• Let now f /∈ Hs(Td). Then there is g ∈ Hs such that (f, g)s = ∞.
Consider the set

A = {u ∈ Hσ : (g, u)s <∞}.
We already checked that µs(A) = 1 (replace f by g in the discussion
of the first half of the slide). The image of A under our shift is the
set B defined by

B = {u+ f, u ∈ A}.

Clearly A ∩ B = ∅ and therefore µs(B) = 0. Thus we found a set of
measure 1 which is sent by the shilt by f map to a set of measure 0.
This completes the proof.
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Invariance of µs under the free Schrödinger evolution

Proposition 22

Let S(t) = eit∆ . Let µs(t) be the image of µs under the map from

Hσ(T) to Hσ(T) defined by u 7−→ S(t)(u) . Then µs(t) = µs.

Proof. We have that

S(t)
( ∑
n∈Zd

einx
gn(ω)

〈n〉s

)
=

∑
n∈Zd

einx
e−itn

2
gn(ω)

〈n〉s

which has the same distribution as∑
n∈Zd

einx
gn(ω)

〈n〉s

because e−itn
2
gn(ω) has the same distribution as gn(ω) (invariance of

complex gaussians by rotations). This completes the proof.
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A remark

• Even in 1d, for a fixed sequence (cn)n∈Z the free Schrödinger evo-

lution ∑
n∈Z

cn e
inx e−itn

2

may have a complicated behaviour depending on the nature of the

number t (leading to interesting number theory considerations) but

the statistical behaviour under µs is the same for each time t.
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Transport of µs under nonlinear transformations

Question : How behaves µs under the flow of the nonlinear Schrödinger
equation (NLS) ? Let us start by the dispersionless model :

Theorem 23 (Oh-Sosoe-Tz. (2017))

Let d = 1, s ≥ 1 be an integer and 0 < σ < s − 1/2. Let ρs(t)
be the image of µs under the map from Hσ(T) to Hσ(T) defined by
u0 7−→ u(t) , where u(t) solves

i∂tu = |u|2u, u|t=0 = u0 . (20)

Then for t 6= 0, the measure ρs(t) is not absolutely continuous with
respect to µs.

• The solution of (20) is given by

u(t, x) = u0(x) e−it|u0(x)|2 (21)

and the idea behind the proof is to show that a typical regularity prop-
erty of the data resulting from the iterated logarithm law associated
with µs is destroyed by the time oscillation in formula (21).
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Transport of µs under nonlinear transformations (sequel)

But we also have :

Theorem 24 (Deng-Sun-Tz. 2022)

Let s > 2 and 1 ≤ σ < s− 1. Let p ≥ 2 be an even integer. Let µs(t)

be the image of µs under the map from Hσ(T2) to Hσ(T2) defined by

u0 7−→ u(t) , where u(t) solves the nonlinear Schrödinger equation

(i∂t + ∆)u = |u|pu, u|t=0 = u0 . (22)

Then µs(t) is absolutely continuous with respect to µs. In other words,

µs is quasi-invariant under the flow of (22). In particular for fixed t, x

the law of u(t, x) has a density with respect to the Lebesgue measure

on C.
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Remarks

• Previously, we had similar results for NLS in 1d, for the nonlinear

wave equations in dimensions ≤ 3 (with energy sub-critical nonlinear-

ities), for the gKdV equation and for BBM type models.

• The first result for measures in negative Sobolev spaces is by Oh-

Seong in the context of 4NLS.

• The 3d NLS does not seem out of reach ...

• Depending on the equation, we have more or less informations on

the resulting Radon-Nykodim derivatives.
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A corollary (L1 stability for the corresponding Liouville equation)

Theorem 25

Let s > 2. Let f1, f2 ∈ L1(dµs) and let Φ(t) be the flow of

(i∂t + ∆)u = |u|2pu, u|t=0 = u0 ,

defined µs a.s. Then for every t ∈ R, the transports of the measures

f1(u)dµs(u), f2(u)dµs(u)

by Φ(t) are given by

F1(t, u)dµs(u), F2(t, u)dµs(u)

respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµs). Moreover

‖F1(t)− F2(t)‖L1(dµs)
= ‖f1 − f2‖L1(dµs)

.

• Local in time bounds for other distances are obtained in a recent

work by work by Forlano-Seong. There are many further things to be

understood.
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Remarks

• The above results are restricted to relatively regular solutions of the

equation (cf. the assumption s > 2) because in my present under-

standing the question of quasi-invariance seems strictly more compli-

cated than the question of proving the existence of the dynamics (an

infinite dimensional phenomenon).

• For exemple, in the context of the impressive recent results by Deng-

Nahmod-Yue for NLS with low regularity gaussian data, the question

of the propagation of the gaussianity by the flow of the equation

seems completely open.

• A similar remark applies to the earlier probabilistic well-posedness

results by Nicolas Burq and myself on the nonlinear wave equation we

discussed in the previous lecture and the result by Colliander-Oh on

the 1d NLS.
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Remarks (sequel)

• I however expect that the methods and the ideas developed in

the work on probabilistic well-posedness may become useful in quasi-

invariance questions. Ideally, one day we would succeed to have a

quasi-invariance result for a deterministically ill-posed posed problem.

• A very interesting recent work by Forlano-Tolomeo uses the proba-

bilistic well-posedness in the context of a quasi-invariance problem. It

is however not clear whether in their model (1d fractional NLS) the

probabilistic well-posendess is really needed.

• In May 2022, Leonardo Tolomeo announced me that he was able

to prove the quasi-invariance of the gaussian measures in the context

the probabilistic well-posedness results by Nicolas Burq and myself

discussed earlier in these lectures. I am looking very much forward to

see the details of his work.
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Methods

• Roughly speaking, presently, we have two different methods to prove
this kind of quasi-invariance results :
• Method 1 : Using the time oscillations (dispersive estimates).
• Method 2 : Using the random oscillations (in the spirit of the
analysis we did in the first lecture).
• In both methods, we do not study directly the evolution of the
gaussian measure µs but the evolution of ρs defined by

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where Rs(u) is a suitable correction and where χ is a continuous
function with a compact support and where H(u) is the Hamiltonian
of the equation under consideration (conserved by the flow). We
formally have

e−Rs(u)dµs(u) = Z−1e−Rs(u)e−‖u‖
2
Hsdu = Z−1e−Es(u)du ,

where

Es(u) = ‖u‖2Hs +Rs(u) .
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Methods (sequel)

• The correction Rs(u) in the energy functional

Es(u) = ‖u‖2Hs +Rs(u)

is of fundamental importance and there are different intuitions behind

its construction : normal form reductions, traces of complete inte-

grability, modulated energies, ...

• Interestingly, in some cases the construction of Rs(u) requires renor-

malisation arguments.

• However, an important feature is that we do not renormalise the

equation which stays always the same. Instead, we consider renor-

malised functionals associated with the equation with data distributed

according to a gaussian field.
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On method 1

• Let Φ(t) be the flow of the PDE under consideration.

• Formally the transported measure is given by

Z−1χ(H(u)) e−Es(Φ(t)(u)) du =

Z−1χ(H(u)) e−Es(Φ(t)(u)) eEs(u)e−Es(u)du

which can be interpreted as the (relatively) well defined object

e
−
(
Es(Φ(t)(u))−Es(u)

)
χ(H(u))e−Rs(u)dµs(u) .

• Therefore we hope that the Radon-Nykodim derivative of the trans-

port of ρs is given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
• Problem : In Es(Φ(t)(u))−Es(u) both terms are strongly diverging

on the support of µs but the hope is to find some cancellations thanks

to PDE smoothing estimates.
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On method 1 (sequel)

• More precisely, one can write

Es(Φ(t)(u))− Es(u) =
∫ t

0

d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

dτ.

Set

Gs(τ) =
d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

.

We will be done, if we can prove that∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−d2−

,

for a suitable choice of Rs(u) and for a suitable number θ.

• If Es is a conserved quantity (Gibbs measures) then Gs = 0 and

one expects an invariant measure. However, this may not be true at

the level of the approximated finite dimensional models and a serious

difficulty may appear (cf. works by Nahmod-Oh-Rey Bellet-Staffilani,

Tz.-Visciglia, Genovese-Luca-Valeri, ...).
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On method 1 (sequel)

• If θ < 2 the Randon-Nykodim density is indeed given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
in the sense that it is the natural limit of the corresponding (perfectly

well defined) finite dimensional densities.

• If θ ≥ 2, we can define the Radon-Nykodim density of the transport

of

exp
(
− ‖u‖m

H
s−d2−

)
χ(H(u)) e−Rs(u)dµs(u),

where m� 1 (depending on θ).

• Remark. It would be interesting to replace∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−d2−

,

with more subtle estimates.
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On method 2

• Let A ⊂ Hσ(T) be a measurable set.

• Recall that

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where χ is a continuous function with a compact support and H(u)

is the Hamiltonian of the equation under consideration.

• Then
d

dt
ρs(Φ(t)(A))

∣∣∣∣
t=t̄

=
d

dt
ρs(Φ(t)(Φ(t̄)(A)))

∣∣∣∣
t=0

which is formally equal to∫
Φ(t̄)(A)

d

dt
Es(Φ(t)(A))

∣∣∣∣
t=0

dρs(u)

≤
∥∥∥∥ ddtEs(Φ(t)(A))

∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

(
ρs(Φ(t̄)(A))

)1−1
p
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On method 2 (sequel)

• We would be done if we show that∥∥∥∥ ddtEs(Φ(t)(A))
∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

≤ Cp, p� 1 . (23)

In the proof of the last inequality we only exploit the random oscilla-
tions of the initial data.
• Important observation : if we are only interested in the qualitative
statement of quasi-invariance then in (23) we can suppose that A in-
cluded in a bounded set of a Banach space H which is of full measure
such that the PDE under consideration is globally well posed in H
(existence, uniqueness and persistence of regularity).
• Let us formally show how we use (23) (similarly to the uniqueness
for 2d Euler) to get the quasi-invariance. Set

x(t) = ρs(Φ(t)(A)) .

Thanks to (23) we have

ẋ(t) ≤ Cp(x(t))
1−1

p
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On method 2 (sequel)

Therefore
d

dt

(
(x(t))

1
p

)
≤ C .

• An integration yields

(x(t))
1
p − (x(0))

1
p ≤ Ct

Therefore, if x(0) = 0 then

x(t) ≤ (Ct)p

which goes to zero as p→∞, provided Ct < 1.

• Since the constant C is uniform we can iterate the last argument

and achieve any time.

• The above argument may become rigorous if we use some approx-

imation arguments resulting from the Cauchy problem theory of the

equation under consideration.
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Final remarks

• Basically, it may look that Method 2 performs better for equations

with weaker dispersion.

• I do not see yet an efficient way to combine Method 1 and

Method 2 ...

• In the work on 2d NLS with Deng and Sun, we follow Method 2 with

several key novelties. One of them is that thanks to the structure of

the resonant set we can use a normal from reduction and then use the

time oscillations via the Strichartz estimates for the linear equation

(a similar idea was used in my work with Hani-Pausader-Visciglia on

solutions of NLS with growing higher Sobolev norms).

•We are not able so far to use the recent refined resolution ansatz (as

the random averaging operators) in the context of quasi-invariance of

gaussian measures. It would be very interesting to clarify whether it

may be possible. This is what I am presently trying to understand ...
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2D NLS analysis, the setup

• Write

v(t) = e−it∆u(t), v(t) =
∑
k

vk(t)eik·x.

• If u(t) solves i∂tu+ ∆u = |u|2u, then

∂tvk =
1

i

∑
k1−k2+k3=k

e−itΦ(~k)vk1
vk2

vk3
,

where

Φ(~k) := |k1|2 − |k2|2 + |k3|2 − |k|2 = 2(k1 − k2) · (k2 − k3).

• We have

1

2

d

dt
‖v(t)‖2Hs = −

1

4
Im

∑
k1−k2+k3−k4=0

k2 6=k1,k3

ψ2s(~k)e−itΦ(~k)vk1
vk2

vk3
vk4

,

ψ2s(~k) = |k1|2s − |k2|2s + |k3|2s − |k4|2s.
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• Set

N0,t(v) =
∑

k1−k2+k3−k4=0
Φ(~k)6=0

ψ2s(~k)
e−itΦ(~k)

−iΦ(~k)
vk1
vk2
vk3
vk4
,

R0,t(v) =
∑

k1−k2+k3−k4=0
Φ(~k)=0

ψ2s(~k)vk1
vk2
vk3
vk4

R1,1,t(v) = 2
∑

k1−k2+k3−k4=0
Φ(~k) 6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
p1−p2+p3=k1

e−itΦ(~p)vp1vp2vp3vk2
vk3
vk4
,

R1,2,t(v) = −2
∑

k1−k2+k3−k4=0
Φ(~k)6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
q1−q2+q3=k2

eitΦ(~q)vk1
vq1vq2vq3vk3

vk4
.

• Defining

Es,t(v) :=
1

2
‖v‖2

Hs +
1

4
ImN0,t(v)

we obtain that along the NLS flow, we have

d

dt
Es,t(v) :=

1

4
Im
[
R1,1,t(v) +R1,2,t(v)−R0,t(v)

]
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• Let us look at the simplest (resonant) term

R0,t(v) :=
∑

k1−k2+k3−k4=0
Φ(~k)=0

ψ2s(~k)vk1
vk2

vk3
vk4

.

• W.L.O.G., we assume that vkj = P̂Njv(kj) and N(1) ≥ N(2) ≥ N(3) ≥
N(4) are the rearrangement of N1, N2, N3, N4.

• We have |ψ2s(~k)| . N2s−2
(1) N2

(3) and therefore

|R0,t(v)| . N2s−2
(1) N2

(3)

∫ 2π

0

∫
T2
eit∆f1 · eit∆f2e

it∆f3 · eit∆f4dtdx,

where f̂j(kj) = |vkj |. The space-time integral can be treated using

the bilinear Strichartz estimate. Due to the unavoidable loss N0+
(3) ,

we have

|R0,t(v)| . ‖PN(1)
v‖Hs−1‖PN(2)

v‖Hs−1‖PN(3)
v‖H2+‖PN(4)

v‖L2.

• No matter how large s is, the above estimate is not enough for our

need, as v ∈ H(s−1)− almost surely. Nevertheless, we are ε-close to

what we expect (for s large).
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Exploiting the random oscillation

• By Method II, what we are allowed reduce the estimate to t = 0
and average on the support of the measure. So we have access to the
probability toolbox: Wiener chaos estimate: l−linear Gaussian sum:

Tl :=
∑

k1,··· ,kl
ck1,··· ,klgk1

(ω) · · · gkl(ω),

for any p ≥ 2, ‖Tl‖Lpω ≤ Cp
l
2‖Tl‖L2

ω
.

• The pairing contributions (k1 = k2, k3 = k4), (k1 = k4, k2 = k3)
in R0,t(v) disappear by taking the imaginary part, it is reduced to
estimate

p2
∥∥∥ ∑
k1−k2+k3−k4=0,

k2 6=k1,k3

Φ(~k)=0

ψ2s(~k)1|kj|∼Nj

gk1
(ω)gk2

(ω)gk3
(ω)gk4

(ω)

〈k1〉s〈k2〉s〈k3〉s〈k4〉s
∥∥∥
L2
ω

Consider the worst case, say N1 ∼ N2 � N3 + N4 = O(1), the
above quantity can be crudely bounded by p2N2s−2

(1) ·N−2s+1
(1) = p2N−1

(1).
By interpolating with the deterministic bound in the last slide, we
conclude that ‖ImR0,t(v)|t=0‖Lpω ≤ Cp.
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The key cancellation

• The treatment for N0,t(v) follows from the similar analysis +

resonance decomposition according to the value of Φ(~k).

• However, the estimate for the second generations R1,j,t(v), j =

1,2 requires another algebraic cancellation.

• The reason is that in the high-high-low-low-low-low regime, the

most problematic contribution is the paring of two dominant fre-

quencies living in different generations. These types of pairing

prevent us to gain from the Wiener chaos.
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The key cancellation (sequel)

• Written in formula, these two pairing configurations are:

S1,1,1(v) :=

4
∑

k1 6=k2

|vk2
|2

∑
|k3|+|k4�|k1|,|k2|
|p2|+|p3|�|k1|,|k2|
k3−k4=k2−k1
p2−p3=k2−k1

ψ2s(~k)

Φ(~k)
e−it(|k3|2−|k4|2+|p2|2−|p3|2)vk3

vk4
vp2vp3,

and

S1,1,2(v) :=

4
∑
k1,k3

|vk3
|2

∑
|k2|+|k4|�|k1|,|k3|
|p1|+|p3|�|k1|,|k3|
p1+p3=k1+k3
k2+k4=k1+k3

ψ2s(~k)

Φ(~k)
eit(|k2|2+|k4|2−|p1|2−|p3|2)vk2

vk4
vp1vp3.
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The key cancellation (sequel)

• To understand the hidden cancellation, for S1,1,1(v), one can think

about the sum is taken over |k3|, |k4|, |p2|, |p3| = O(1), then

ψ2s(~k)

Φ(~k)
≈
|k1|2s − |k2|2s

|k1|2 − |k2|2
,

then the second sum in the definition of S1,1,1 is completely decoupled

as | · · · |2 and we deduce that S1,1,1 is almost real.
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Thank you for your attention !
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