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Introduction

e Our goal is to describe results concerning the construction of /ow
regularity solutions of partial differential equations, depending on a
random parameter.

e [ he motivations for these studies are multiple. However, at the
end, the obtained results and the methods leading to these results
are conceptually close to each other.



Multiple Fourier series

o Let T¢ = (R/(27Z))% be the torus of dimension d.

o If f:T% — C is a C® function then for every z € T¢,

f(@)= > f(n)em™?,

nez4

where f(n) are the Fourier coefficients of f, defined by

f(n) = (2m) ¢ /Tdf(:v)e_m'xdaz.
e In particular

o) =(@m™ | fa)de.



Sobolev spaces on the torus

e For x = (z1, -+ ,z4) € R%, we set

() = (1423 +---+a3)3.

e For s € R, we define the Sobolev norm of f by

2s| F 2
| s ray = D (m)*°IF ()% (1)
neZzd
e For s > 0 an integer, we have the norm equivalence
2 2
”fHHS(Td) ~ Z ||aaf||L2(Td) : (2)
la|<s

In (2), 9% denotes a partial derivative of order at most s.

e For s = 0, we recover the Lebesgue space L2(T%).

e The Sobolev space H5(T?) is defined as the closure of C°°(T%) with
respect to the norm (1).



Probabilistic effects in problems of fine analysis

e \We first discuss an almost sure improvement of the Sobolev em-
bedding.

e We say that a random variable g belongs to Ng(0,02), if g = h+il,
where h € N(0,02) and | € N(0,02) are independent.

o Let uw € L2(T) be a deterministic function. There is a sequence
(cn)nez € 12(Z) (the Fourier coefficients of u) such that

u(z) = ) cpe™.
nez
e Consider now a randomised version of u given by the expression

uw(x) = Z cn gn(w) emma
nez

where (gn(w)),cz are independent from Ng(0,1).



Almost sure improvement of the Sobolev embedding

e We have gn(w) e € N (0, 1) (invariance under rotations of Nz (0, 1)).

e Next, using the independence of g, we get that for a fixed x € T,

uw(x) € N@(O, > |cn|2) .

nes
e Consequently uy(xz) € LP(22 x T), Vp < oo which gives :

For every p < oo, uw(x) € LP(T), almost surely.

e [ he last statement is to compare with the Sobolev embedding :

1
H?2(T) is continuously embedded in LP(T) for every p < oo. The
1
statement is false, if we replace H2(T) with H%(T) for some s < 1/2.



Remarks

e Very informally : the randomisation " gains” a 1/2 derivative.

e \We can replace the gaussians with much more general random
variables (Bernoulli variables, for instance).



Products in Sobolev spaces of negative indexes

e Consider the random series :

: 1 1
uo(z) = 3 gn(? M S <<z,
nez <n> 2
with g, as in the previous discussion.

1
e \We have that a.s. uy, € H°(T), 0 < « —% but a.s. uy, ¢ H 2(T).

e u, belongs to a Sobolev space of negative regularity and therefore it
is hard to define an object like \uw|2. For example, thanks to Parseval,
the zero Fourier coefficient of |uw|? should be

W 2

nez
which is a.s. divergent. However, it turns out that the zero Fourier
coefficient is the only obstruction and it is possible, after a renormal-
isation, to define |uw|2 and even to compute its Sobolev regularity.



Products in Sobolev spaces of negative indexes

o Fix 0 <« —% (close to a — %). Consider the partial sums

u, N(z) = ) Memx e C>(T)
In|<N (n)

and write

> -
| 7N( )‘ |n|§N <n>2a nl;”Q <n1>04<n2>04 ’
|n1|7|n2|§N

e The first term (the zero Fourier coefficient) contains all the singu-
larity while the second has an a.s. limit in H29(T).



Products in Sobolev spaces of negative indexes

e Consequently, we set

CN::E( Z ‘ggf;lb) _ Z

[n|<N [n|<N

2 1-2a
<n>2a ~ N ?

and we define the renormalised partial sums

g, ()2 —cy = > 90 ()" - 2‘|‘ > g1 () gna () et(n1—n2)z

ey (m2e niZ,  (n1)%(ng)e

’n1‘7‘n2|§N

e [ hanks to the independence of g, we have

E(‘ 2 |gn(<c;)>|22a—2'2): 2 <nj4a’

n|<N In[<N

which has a limit as N — oo when a > 1/4.



Products in Sobolev spaces of negative indexes

e Another use of the independence vields that

(H gnq (w)gnz(w) ei(nl—ng)x

niEn, | (n1)¥n2)¢
In1], |n2|<N

2
H20>

iIs bounded by
>40

(n1 —no
C .
nlz;@ (n1)2%(ng)2@

The last sum is convergente as far as —4o0+4a > 2, which is equivalent

to our assumption ¢ < a — *

5-
e Hence the sequence
(|%,N(3€)|2 — CN)

has a limit in L2($2; H2°(T)). This limit is by definition the renormal-
isation of |uy|?.

N>1
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Remarks

e Using more involved arguments, we can also show the almost sure
convergence in the Sobolev space HQU(T) of the sequence

(@I —ew) -

e Since o < 0 the norm in H2°(T) is weaker than in H°(T) (where
uw(x) is defined).

e Informally : the square of the modulus of an element of H? is in
H?2° after a renormalisation.

e [ his is a remarkable probabilistic phenomenon, in the heart of the
study of evolution partial differential equations in the presence of
randomness in Sobolev spaces of negative indexes.
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Remarks (sequel)

e Again, we can replace the gaussians with much more general random
variables.

e \We can also replace the sequence
1
(n)e

with a more general sequence (¢p), i.e. we can consider

Z cn gn(w) einx

[n|<N

instead of

Z gn(w) LN
<y (M7
but I am not aware of the optimal regularity of the renormalised square
in function of the sequence (cn).
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The nonlinear wave equation

Theorem 1 (classical)

o For every (ug,ui) € HI(T3) x L2(T3) there exists a unique global
solution of

(8752 —ANu+u3=0, u(0,z)=ug(), u(0,z)=mui(z)

in the class (u, du) € C(R; HI(T3) x L2(T3)).
e If in addition (ug,uy) € H5(T3) x H5~1(T3) for some s > 1 then

(u, Opu) € C(R; H5(T3) x H~1(T3)).

T he dependence with respect to the initial data is continuous.

e The local in time part of Theorem 1 can be extended to the case
(ug,u1) € H5(T3) x H~1(T3), s > 1/2, and the global in time part to
s > 13/18 (Kenig-Ponce-Vega, Gallagher-Planchon, Bahouri-Chemin,
Roy).

e We conjecture that Theorem 1 remains true for s > 1/2 (proved
recently by Dodson in the radial case of R3).
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Limit of the deterministic methods

Theorem 2 (ill-posedness)
Let s € (0,1/2) et (ug,u;) € H5(T3) x H5~I(T3). There exists a
sequence

un(t,z) e CP(R XT3, N=1,2,--
such that
(07 — D)uy + u3 =0
with

N'_LT_OO [(un(0) — uo, Orun(0) — wi) |l gs(r3yx grs—1¢13) = O
but for every T > 0,

lim su un(t s = 4.
N——+o0 ogthH n e )”H (T%) +

e [ he proof is based on an idea introduced by Gilles Lebeau and
further developed by Christ-Colliander-Tao, Burg-Tz., Xia.
14



Solving the equation by probabilistic methods

e \We can ask whether some form of well-posedness survives for initial
data in

H(T3) x H~1(T3), s<1/2. (3)

e The answer of this question is positive if we endow the space (3)
with a non degenerate probability measure such that we have the ex-
istence, the uniqueness, and a form of continuous dependence almost
surely with respect to this measure.
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Choice of the measure

e \We will choose the initial data among the realisations of the follow-
ing random series

@)= Y W@y =y
nez3 <TL> neZ3
Here {gn}, cz3 €t {hn},cz3 are two families of independent random
variables conditioned by gn = g— and hp, = h_5, SO that ug and uy
are real valued.
e In addition, we suppose that for n #= 0, g, and hy, are complex gaus-
sians from Ng(0,1), and that gg and hg are standard real gaussians
from N(O,1).
e The initial data (4) belong almost surely to HS(T3) x H5~1(T3) for

s< o — % Moreover, the probability of the event

Z:ggi)l P T (4)

3 5
(uf, uy) € H*72(T3) x H*2(T?)
IS zero.
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Reformulation of the ill-posedness result

Theorem 3

Let a € (3/2,2) and 0 < s < a— 3/2. For almost every w, there exists
a sequence

uf(t,z) € C°(RxT3), N=1,2,--
such that

(07 — A)uf + (ug)3 =0
with
im (i (0) — u, B (0) — ut)ll s w3y wprs-1(73) = O
but for every T > O,

lim su

w
O 573y = +00.
VIR oS N D s sy = oo

We can however prove the following result:
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Theorem 4 (Burq-Tz. (2010))
Let a € (3/2,2) and 0 < s < a—3/2. Define (thanks to the classical
well-posedness result) the sequence (uy)n>1 Of solutions of

(87 — Au+u3=0 (5)
with C°° initial data

uc(‘)’(a:) _ Z gn(w)em.x | u‘f(:r;) _ Z hn(OJ) ein'x.

n|<N ()« n|<N (nyo—1

The sequence (uy)n>1 converges almost surely as N — oo in C(R, H3(T3))
to a (unique) limit uw which satisfies (5) in the distributional sense.

e [ he type of the approximation of the initial data is crucial when we
prove probabilistic low regularity well-posedness.

e Even if we consider the approximation of the initial data by Fourier
truncation there is dense set of pathological data such that the state-
ment of Theorem 4 does not hold (we discuss this in the next slide).
e \We can prove unigueness in a suitable functional framework.

e We can consider more general randomisations (this fact had an
important impact in the field).

18



The pathological set

e [ he result by Burz-Tz. provides a nice dense set > of initial data
such that for good approximations we get nice global solutions (but
for bad approximations we get divergent sequences !).

e On the other hand we also have :

Theorem 5 (Sun-Tz. 2020)

Let 0 < s < 5. Then there is a dense set S C H*(T3) x H*~(T3) such

that for every (f,g) € S, the sequence (uy)n>1 Of (smooth) solutions
of

(8752 — Au+u3 =0,
with data

ug(z) = Y Ff(n)e™™, ui(@) = Y Gln)enT

n|<N n|<N
do not converge. More precisely, for every T' > 0O,

M un (Ol poe(po,17; m2(13)) = F0°

e Remark : The pathological set S contains a dense G set.
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Going beyond the Burg-Tz. result

Theorem 6 (Oh-Pocovnicu-Tz. (2019))

Let o € (%, %] and s < a—3/2. There is divergent sequence (cy)n>1
such that if we denote by (u%;)N>1 the solution of

8152u—Au—cNu—I—u3=O,

with initial data given by

u‘c‘)’,N(:I:) = > J (a)e : ui y(z) = > i_)le
<N <N (1)

then for almost every w there exists T, > 0 such that (u%;)n>1 con-
verges in C([-T, Tw]; H5(T3)).

e A triviality result motivating the introduction of ¢y is also obtained.
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Remarks

e The result by Oh-Pocovnicu-Tz. was the first step in the study of
the nonlinear wave equation in Sobolev spaces of negative indexes.
It was very recently improved to a &€ (1,3] in an impressive work by
Bringmann.

e The ultimate goal is to arrive to a« = 1 (the singular part of the
support of the associated Gibbs measure). This now seems to be
only a question of time.

21



Invariant measures for the nonlinear Schrodinger equation

(20 + D)u — |u|2u =0, u(0,2)=ug(z) =zeT> (6)
e (6) is a Hamiltonian PDE. Therefore

E(u) = /11‘2 (|V;,;u(t,a:)\2 + |u(t,az)|2 + %|u(t,a§)|4)daz

is a (formally) conserved quantity for (6).
e The Gibbs measure associated with (6) is a renormalisation of the
completely formal object

exp(—F(u))du .

e [ he measure obtained by this renormalisation is absolutely con-
tinuous with respect to the gaussian measure given by the random
series

ug (x) = Z g?i‘;)ein-a:
nez?

where {gn}nezg is a family of independent (complex valued) gaussians
from N¢(0,1).
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Theorem 7 (Bourgain (1996))
o Let (uf;)N>1 be the sequence of solutions of

(i0r + A)u — |u[*u =0 (7)
with C°° initial data given by

u“@’(x)z Z gn(w)ez’n-x.

n|<N (n)

For every s < 0, the sequence

(exp (22—;2 ||u°j<;(t)||%2> u(ﬁr(t))NZl

converges almost surely in C(R; H5(T?)) to a limit which satisfies a
renormalised version of (7).

e Moreover, the Gibbs measure is invariant under the resulting flow.

23



Remarks

e [ he statement of the results by Bourgain and Burg-Tz. are simi-
lar. A notable difference is that in the Bourgain theorem, in order to
obtain a limit one needs to reanormalise the sequence of approximate
solutions (u%;)nN>1. Moreover in Bourgain’'s theorem the randomisa-
tion is "rigid" .

e We can formulate the Bourgain theorem in the spirit of the result
by Oh-Pocovnicu-Tz. More precisely, one can prove the convergence
of the solutions of

10w + Au + cyu — |u\2u =0
with data
ug@) =y 2 gina,

n|<N (n)

where (cy(w))n>1 IS @ sequence of real numbers almost surely diver-
gent to 4oo.
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Singular stochastic PDE's

e [ he set of problems considered in the previous slides is close to
the analysis of parabolic PDE’s in the presence of a singular random
source term (noise).

e [ he closest to the previously considered models is the nonlinear
heat equation

ou—Au+ud=¢ w0,z)=0, zeT3. (8)

e Here ¢ is the space-time white noise on [0, c0[xT3. It is the source
term £ which represents the singular randomness in (8) (in the previous
slides it was the low regularity random initial data which represented the singular

randomness).
e The white noise on [0, co[xT3 may be written as
=Y Bn(t)e™?, (9)
ncZ3

where 3, are independent Brownian motions, conditioned by 3, = B8_,
(8o is real and for n # 0, By is with values in C).
25



Singular stochastic PDE’s (sequel)

e For N > 1, an approximation of & by smooth functions is given by
En(t,x) = py+€& where pn(t,2) = N°p(N2t, Nz) with p a test function
with integral 1 on [0, co[xT3.

Theorem 8 (Hairer (2014), Mourrat-Weber (2018))

There is a sequence (cy)n>1 Of positive numbers, divergent as N — oo
such that if we denote by uy the solution of

Ouy — Duy — eyuy +uy =&y,  u(0,2) =0

then (uny)n>1 converges in suitable Holder type spaces as N — co.

e The initial data «(0,z) can be different from zero : it suffices that
it belongs to a suitable functional framework.
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Remarks

e [ he result remains true for a noise ¢ defined by

Sz Z Z gm,n(w)eimt ein-a:7

mezneZ3

where {gm,n}(m n)ezA is a family of independent complex gaussians
conditioned so that ¢ is real values (white noise on T x T3).

e [he two dimensional case is treated in the work by Da Prato-
Debussche (2003).

e [ here are other parabolic PDE’s for which one can obtain results
in similar spirit, the most popular being probably the KPZ equation.
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On the structure of the proofs

e [ he proofs of the previously described results follow the same
scheme.

e First, we construct local in time solutions. Then we use a global in-
formation which is either an invariant measure or an energy estimate
in order to get global in time solutions.

e In order to construct the solutions locally in time, we look for the
solution in the form

u = ui + uo,

where w1 contains the singular part of the solution.

e Using probabilistic arguments, close the the ones in the beginning of
the lecture, we prove that w1 has properties better than the properties
given by deterministic methods. All probabilistic part of the argument
IS in this part of the analysis.

e In the proof of the result by Burg-Tz. we use a.s. improvements
of the Sobolev embedding while all the other results use products in
Sobolev spaces of negative indexes.
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On the structure of the proofs (sequel)

e \We then solve the problem for us by purely deterministic arguments.
Here the nature of the equation becomes even more important. In
the case of the heat equation, the basic tool is the elliptic regularity
while for the other equations we exploit the time oscillations in a

crucial way (these oscillations are captured by the Bourgain spaces,
for instance).

e [ he passage from local to global solutions in the result by Bourgain
uses an invariant measure as a global control on the solutions. In the
result by Burg-Tz. the globalisation is done by energy estimates. It
IS remarkable that in the context of the nonlinear heat equation these
two techniques are also used to globalise the solutions.
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A final remark

e In the work by Burg-Tz. we allow more general randomisations
compared to Bourgain's work. However, the proof does not say any-
thing about the nature of the transported by the flow initial measure
while in the work by Bourgain the initial gaussian measure is quasi-
invariant under the flow.

e [ his fact motivated recent work on quasi-invariant measures for
nonlinear dispersive equations.

30



Merci beaucoup !
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