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The Sobolev spaces on the circle

• Let T := R/2πZ. We denote by Hs(T) the Sobolev spaces on the

circle.

• If

u(x) =
∑
n∈Z

einx û(n),

where

û(n) =
1

2π

∫
T
e−inx u(x)dx ∈ C

then

‖u‖2Hs :=
∑
n∈Z
〈n〉2s|û(n)|2,

where

〈n〉 := (1 + n2)
1
2 .

• The norm Hs is induced from a natural scalar product which makes

Hs(T) a Hilbert space.
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The gaussian measure µs

• We wish to define a gaussian measure of the form

Z−1 e−‖u‖
2
Hs du

as a measure on a suitable functional space.

• Formally

Z−1 e−‖u‖
2
Hs du = Z−1 exp

(
−
∑
n∈Z
〈n〉2s|û(n)|2

) ∏
n∈Z

d û(n)

and the last expression makes think about the well defined object∏
n∈Z

Z−1
n exp

(
− 〈n〉2s|û(n)|2

)
d û(n),

where we formally wrote

Z−1 =
∏
n∈Z

Zn
−1 (Zn = π〈n〉−2s).
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The gaussian measure µs (sequel)

• Therefore, we can define the measure µs

Z−1 e−‖u‖
2
Hs du

as the image measure by the map

ω 7−→
∑
n∈Z

einx
gn(ω)

〈n〉s
,

where (gn(ω))n∈Z are i.i.d. complex gaussian random variables with

mean 0 and variances 1, on a probability space (Ω,F , p).

• Question : µs is a measure on which space ?
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The gaussian measure µs (sequel)

• We can write for N < M∥∥∥∥ ∑
N≤|n|≤M

einx
gn(ω)

〈n〉s

∥∥∥∥2

L2(Ω;Hσ(T))
'

∑
N≤|n|≤M

〈n〉2σ

〈n〉2s

which tends to zero as N →∞, provided

σ < s−
1

2
.

• Therefore ∑
n∈Z

einx
gn(ω)

〈n〉s
∈ L2(Ω;Hσ(T)) .
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The gaussian measure µs (sequel)

• We conclude that the map

ω 7−→
∑
n∈Z

einx
gn(ω)

〈n〉s

defines a probability measure on Hσ(T), σ < s− 1
2. In addition

µs(H
s−1

2(T)) = 0 .

• In particular

µs(H
s(T)) = 0 .

• In this constriction Hs(T) is canonical but Hσ(T) is not, it may be

replaced for instance by Wσ,∞(T).
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The Cameron-Martin theorem

• Question : How behaves µs under transformations ?

Theorem 1 (Cameron-Martin 1944)

Let f ∈ Hσ(T) and let µf be the image of µs under the map from
Hσ(T) to Hσ(T) defined by

u 7−→ f + u .

Then µf is absolutely continuous with respect to µs if and only if

f ∈ Hs(T).

• Recalling that formally

dµs(u) = Z−1 e−‖u‖
2
Hs du

we may expect that

dµf(u)

dµs(u)
= e−‖f‖

2
Hs−2(u,f)s ,

where (·, ·)s stands for the Hs scalar product.
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Proof of the Cameron-Martin theorem for µs

• Let f ∈ Hs(T). Since we expect that the Radon-Nykodim derivative
is exp

(
−‖f‖2Hs−2(u, f)s

)
the whole issue is to show that (u, f)s <∞,

µs almost surely which is equivalent to∑
n∈Z
〈n〉sf̂(n) gn(ω) <∞, a.s.

which directly results directly from the independence and f ∈ Hs(T).
• Let now f /∈ Hs(T). Then there is g ∈ Hs such that (f, g)s = ∞.
Consider the set

A = {u ∈ Hσ : (g, u)s <∞}.
We already checked that µs(A) = 1 (replace f by g in the discussion
of the first half of the slide). The image of A under our shift is the
set B defined by

B = {u+ f, u ∈ A}.

Clearly A ∩B = ∅ and therefore µs(B) = 0.

Thus we found a set of measure 1 which is sent by the shilt by f map
to a set of measure 0. This completes the proof.
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Invariance of µs under the free Schrödinger evolution

Proposition 2

Let S(t) = eit∂
2
x . Let µs(t) be the image of µs under the map from

Hσ(T) to Hσ(T) defined by u 7−→ S(t)(u) . Then µs(t) = µs.

Proof. We have that

S(t)
( ∑
n∈Z

einx
gn(ω)

〈n〉s

)
=

∑
n∈Z

einx
e−itn

2
gn(ω)

〈n〉s

which has the same distribution as∑
n∈Z

einx
gn(ω)

〈n〉s

because e−itn
2
gn(ω) has the same distribution as gn(ω) (invariance of

complex gaussians by rotations). This completes the proof.
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A remark

• For a fixed sequence (cn)n∈Z the free Schrödinger evolution∑
n∈Z

cn e
inx e−itn

2

may have a complicated behaviour depending on the nature of the

number t (leading to interesting number theory considerations) but

the statistical behaviour under µs is the same for each time t.

9



Transport of µs under nonlinear transformations

Question : How behaves µs under the flow of the nonlinear Schrödinger

equation (NLS) ? Let us start by the dispersionless model :

Theorem 3

Let s ≥ 1 be an integer. Let ρs(t) be the image of µs under the map

from Hσ(T) to Hσ(T) defined by u0 7−→ u(t) , where u(t) solves

i∂tu = |u|4u, u|t=0 = u0 . (1)

Then for t 6= 0, the measure ρs(t) is not absolutely continuous with

respect to µs.

• The solution of (1) is given by

u(t, x) = u0(x) e−it|u0(x)|4 (2)

and the idea behind the proof is to show that a typical regularity prop-

erty of the data resulting from the iterated logarithm law associated

with µs is destroyed by the time oscillation in formula (2).
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Transport of µs under nonlinear transformations (sequel)

But we also have :
Theorem 4

Let s ≥ 1 be an integer. Let µs(t) be the image of µs under the map
from Hσ(T) to Hσ(T) defined by u0 7−→ u(t) , where u(t) solves the
nonlinear Schrödinger equation

(i∂t + ∂2
x)u = |u|4u, u|t=0 = u0 . (3)

Then µs(t) is absolutely continuous with respect to µs. In other words,
µs is quasi-invariant under the flow of (3).

•We have similar results for the fractional NLS in 1d, for the nonlinear
wave equations in dimensions ≤ 3, for the gKdV equation and for
BBM type models.
• Depending on the equation, we have more or less informations on
the resulting Radon-Nykodim derivatives.
• I am very interested in the extension to the 2d NLS which seems
to require some new ingredients. Even the 3d NLS does not seem
completely out of reach ...
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A corollary (L1 stability for the corresponding Liouville equation)

Theorem 5

Let s ≥ 1 be an integer. Let f1, f2 ∈ L1(dµs) and let Φ(t) be the flow

of

(i∂t + ∂2
x)u = |u|4u, u|t=0 = u0 ,

defined µs a.s. Then for every t ∈ R, the transports of the measures

f1(u)dµs(u), f2(u)dµs(u)

by Φ(t) are given by

F1(t, u)dµs(u), F2(t, u)dµs(u)

respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµs). Moreover

‖F1(t)− F2(t)‖L1(dµs)
= ‖f1 − f2‖L1(dµs)

.

• Local in time bounds for other distances are obtained in a recent

work by work by Forlano-Seong. There are many further things to be

understood.
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Remarks

• The above results are restricted to relatively regular solutions of

the equation (cf. the assumption s ≥ 1) because the question of

quasi-invariance seems strictly more complicated than the question

of proving the existence of the dynamics (this seems to be an infinite

dimensional phenomenon).

• For exemple, in the context of the impressive recent results by Deng-

Nahmod-Yue for NLS with low regularity gaussian data, the question

of the propagation of the gaussianity by the flow of the equation

seems completely open.

• A similar remark applies to the earlier probabilistic well-posedness

results by Nicolas Burq and myself on the nonlinear wave equation

and by Colliander-Oh on the 1d NLS.

• I however expect that the methods and the ideas developed in

the work on probabilistic well-posedness may become useful in quasi-

invariance questions. Ideally, one day we will may be succeed to have a

quasi-invariance result for a deterministically ill-posed posed problem.
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Methods

• Roughly speaking, presently, we have two different methods to prove
this kind of quasi-invariance results :
• Method 1 : Using the time oscillations (dispersive estimates).
• Method 2 : Using the random oscillations (concentration of mea-
sure estimates).
• In both methods, we do not study directly the evolution of the
gaussian measure µs but the evolution of ρs defined by

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where Rs(u) is a suitable correction and where χ is a continuous
function with a compact support and where H(u) is the Hamiltonian
of the equation under consideration (conserved by the flow). We
formally have

e−Rs(u)dµs(u) = Z−1e−Rs(u)e−‖u‖
2
Hsdu = Z−1e−Es(u)du ,

where

Es(u) = ‖u‖2Hs +Rs(u) .
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Methods (sequel)

• The correction Rs(u) in the energy functional

Es(u) = ‖u‖2Hs +Rs(u)

is of fundamental importance and there are different intuitions behind

its construction : normal form reductions, traces of complete inte-

grability, modulated energies, ...

• Interestingly, in some cases the construction of Rs(u) requires renor-

malisation arguments (as we saw in the talk by F. Otto yesterday).

• However, an important feature is that we do not renormalise the

equation which stays always the same. Instead, we consider renor-

malised functionals associated with the equation with data distributed

according to a gaussian field.
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On method 1

• Let Φ(t) be the flow of the PDE under consideration.

• Formally the transported measure is given by

Z−1χ(H(u)) e−Es(Φ(t)(u)) du =

Z−1χ(H(u)) e−Es(Φ(t)(u)) eEs(u)e−Es(u)du

which can be interpreted as the (relatively) well defined object

e
−
(
Es(Φ(t)(u))−Es(u)

)
χ(H(u))e−Rs(u)dµs(u) .

• Therefore we hope that the Radon-Nykodim derivative of the trans-

port of ρs is given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
• Problem : In Es(Φ(t)(u))−Es(u) both terms are strongly diverging

on the support of µs but the hope is to find some cancellations thanks

to PDE smoothing estimates.
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On method 1 (sequel)

• More precisely, one can write

Es(Φ(t)(u))− Es(u) =
∫ t

0

d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

dτ.

Set

Gs(τ) =
d

dt
Es(Φ(t)(u))

∣∣∣∣
t=τ

.

We will be done, if we can prove that∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−1

2−
,

for a suitable choice of Rs(u) and for a suitable number θ.

• If Es is a conserved quantity (Gibbs measures) then Gs = 0 and

one expects an invariant measure. However, this may not be true at

the level of the approximated finite dimensional models and a serious

difficulty may appear (cf. works by Nahmod-Oh-Rey Bellet-Staffilani,

Tz.-Visciglia, Genovese-Luca-Valeri, ...).
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On method 1 (sequel)

• If θ < 2 the Randon-Nykodim density is indeed given by

e
−
(
Es(Φ(t)(u))−Es(u)

)
in the sense that it is the natural limit of the corresponding (perfectly

well defined) finite dimensional densities.

• If θ ≥ 2, we can define the Radon-Nykodim density of the transport

of

exp
(
− ‖u‖m

H
s−1

2−

)
χ(H(u)) e−Rs(u)dµs(u),

where m� 1 (depending on θ).

• Remark. It would be interesting to replace∣∣∣∣ ∫ t
0
Gs(τ)dτ

∣∣∣∣ ≤ CH(u)‖u‖
θ

H
s−1

2−
,

with more subtle estimates.
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On method 2

• Let A ⊂ Hσ(T) be a measurable set.

• Recall that

dρs(u) = χ(H(u)) e−Rs(u) dµs(u) ,

where χ is a continuous function with a compact support and H(u)

is the Hamiltonian of the equation under consideration.

• Then
d

dt
ρs(Φ(t)(A))

∣∣∣∣
t=t̄

=
d

dt
ρs(Φ(t)(Φ(t̄)(A)))

∣∣∣∣
t=0

which is formally equal to∫
Φ(t̄)(A)

d

dt
Es(Φ(t)(A))

∣∣∣∣
t=0

dρs(u)

≤
∥∥∥∥ ddtEs(Φ(t)(A))

∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

(
ρs(Φ(t̄)(A))

)1−1
p
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On method 2 (sequel)

• We would be done if we show that∥∥∥∥ ddtEs(Φ(t)(A))
∣∣∣∣
t=0

∥∥∥∥
Lp(ρs)

≤ Cp, p� 1 . (4)

In the proof of the last inequality we only exploit the random oscilla-
tions of the initial data.
• Important observation : if we are only interested in the qualitative
statement of quasi-invariance then in (4) we can suppose that A in-
cluded in a bounded set of a Banach space H which is of full measure
such that the PDE under consideration is globally well posed in H
(existence, uniqueness and persistence of regularity).
• Let us formally show how we use (4) (similarly to the uniqueness
for 2d Euler) to get the quasi-invariance. Set

x(t) = ρs(Φ(t)(A)) .

Thanks to (4) we have

ẋ(t) ≤ Cp(x(t))
1−1

p
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On method 2 (sequel)

Therefore
d

dt

(
(x(t))

1
p

)
≤ C .

• An integration yields

(x(t))
1
p − (x(0))

1
p ≤ Ct

Therefore, if x(0) = 0 then

x(t) ≤ (Ct)p

which goes to zero as p→∞, provided Ct < 1.

• Since the constant C is uniform we can iterate the last argument

and achieve any time.

• The above argument may become rigorous if we use some approx-

imation arguments resulting from the Cauchy problem theory of the

equation under consideration.
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A final remark

• Method 2 performs better for equations with weak dispersion.

• It would be interesting to find a way to combine Method 1 and

Method 2 ...
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Thank you for your attention !
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