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Abstract. We present results concerning the transverse stability of one dimensional soli-
tary waves subject to periodic transverse perturbations in the context of the KP equations
and the water-waves system.

1 Stability of solitary waves for the KdV and the KP equations

The Korteweg–de Vries (KdV) equation and the Kadomtsev-Petviashvili (KP) equa-
tions are derived as asymptotic models (see, e.g., [12]) from the much more compli-
cated, but derived from first principles, water-waves system (the water-waves sys-
tem will be presented below). The KdV and the KP equations have a remarkably
deep structure. We believe that it is worth to always keep in mind that they are
derived from the water-waves system and therefore to try to understand which of
their properties are still true for the water-waves system. Below will be guided by
this philosophy and we will try to focus on those properties of the KdV and the KP
equations which may have at least partial analogues at the level of the water-waves
system. As we will see below some of the properties are in fact already extended at
the level of the water-waves system, others are challenging open problems.

The KdV equation reads

@tu+u@xu+ @3
xu = 0, (1.1)

where the unknown u is a real valued function. The KdV equation has a well-known
particular solution

Sc(t, x) = cQ
�p
c(x � ct)

�

, c > 0, Q(x) = 3ch�2(x/2) (1.2)

called a solitary wave. In (1.2) the positive constant c represents the propagation
speed and one may think of (1.2) as the displacement of the graph of the function
Sc(0, x) from left to the right with constant speed c.

The orbital stability of the KdV solitary wave Sc(t, x) was first studied by Benjamin
in [3]. Thanks to the work of Kenig-Ponce-Vega [10] we know that the KdV equation
(1.1) is globally well-posed in the Sobolev space H1(R) and combining this fact with
the Benjamin analysis leads to the following statement.
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Theorem 1.1 The solitary wave Sc(t, x) is (orbitally) stable as a solution of the KdV
equation. More precisely, for every " > 0 there is � > 0 such that for every u0 2 H1(R)
such that

ku0(x)� Sc(0, x)kH1 < �

the solution of the KdV equation with initial datum u0 satisfies

sup
t2R

inf
a2R

ku(t,x � a)� Sc(t, x)kH1 < ". (1.3)

The translations in (1.3) are needed. Indeed, one cannot have

sup
t2R

ku(t,x)� Sc(t, x)kH1 < "

as can be seen by considering an initial data of the form Sc̃(0, x) with c̃ close to c.
The choice of the Sobolev space H1(R) as a distance to measure the stability phe-

nomenon is natural when having in mind the conservation laws for the KdV equa-
tion (1.1). One easily verifies that the L2 norm and the energy defined as

E(u) =
ˆ
R
(@xu)2 �

1
3

ˆ
R
u3

are conserved by the flow of (1.1). As a consequence, using the Sobolev inequality
one may identify H1(R) as the set of the functions with bounded energy and L2

norm. These two conservation laws play a key role in the proof of Theorem 1.1. As
we shall see below one can also prove asymptotic stability results for the solitary
waves of (1.1).

When studying the stability of the KdV solitary waves under transverse pertur-
bations, the Soviet physicists Kadomtsev and Petviashvily introduced in [8] the two
dimensional models

@x(@tu+u@xu+ @3
xu)± @2

yu = 0 (1.4)

called KP-I and KP-II equations depending on the sign in front of @2
yu (the sign plus

gives KP-II while the sign minus gives KP-I). As mentioned above the KP equations
can also be obtained from the water-waves system (see [12]). Clearly the KdV soli-
tary wave Sc(t, x) solves (1.4) as well. The remarkable formal analysis in [8] leads
to the believe that the KdV solitary wave is stable as a solution of the KP-II equation
and unstable as a solution of the KP-I equation. However a mathematically rigorous
proof of such statements was out of reach at the time of the writing of [8] for sev-
eral reasons. Among the many issues to be resolved an important point is to define
a suitable analytic framework where one can prove that the KP equations (1.4) have
a well-defined dynamics, at least close to the solitary waves. The natural idea we
adopted in the works [6, 17, 19, 23, 27] for an analytic framework in the studying
of (1.4) was to consider (1.4) posed on the the product space R ⇥ T, i.e., for x 2 R
and y 2 T, where T = R/(2⇡Z) denotes a one dimensional torus. In other words,
we shall consider solutions of (1.4) which are localised in x (as Sc(t, x) is) and pe-
riodic in the transverse variable y with period 2⇡ . The choice of 2⇡ is of course
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not canonical and any other period can be considered as well. However by using the
scale invariance1 of the KP equations, we can always reduce the matters to the pe-
riod 2⇡ . The KdV solitary wave Sc(t, x) is seen as a solution of (1.4), periodic in y
(with any period). Therefore, we will be in the situation when we study the stability of
the KdV solitary waves as solutions of the KP equations, subject to periodic transverse
perturbations.

Let us first consider the KP-I equation, posed R⇥ T,

@x(@tu+u@xu+ @3
xu)� @2

yu = 0, x 2 R, y 2 T. (1.5)

The L2 norm is (at least formally) conserved by the flow of (1.5) . So is the energy

E(u) =
ˆ
R⇥T

(@xu)2 +
ˆ
R⇥T

(@�1
x @yu)2 �

1
3

ˆ
R⇥T

u3,

where @�1
x is defined via the Fourier transform as the multiplication with the singular

multiplier (i⇠)�1. In fact there is an infinite sequence of formal conservation laws
associated with the KP-I equation [31]. For instance, the next one after the energy is
of the form ˆ

R⇥T
(@2
xu)2 +

ˆ
R⇥T

(@�2
x @2

yu)2 + l.o.t., (1.6)

where by l.o.t. we mean terms which become negligible if we use the controls given
by the energy and the L2 conservation laws. As it was observed in [18], because of the
presence of antiderivatives in the KP-I conservation laws, there is a serious analytic
obstruction to find a framework which gives sense of the next2 after (1.6) conserva-
tion law of the KP-I equation. Inspired by the structure of the KP-I conservation laws,
we can define the spaces Zs = Zs(R⇥ T) as

Zs =
�

u :
�

�(1+ |⇠|s + |⇠�1k|s)û(⇠, k)
�

�

L2(R⇠⇥Zk) <1
 

and equipped with the natural norm (here by û(⇠, k) we denote the Fourier trans-
form of functions on the product space R⇥ T). These spaces are natural candidates
for studying the global well-posedness of the KP-I equation. The following result is
due to Ionescu–Kenig.

Theorem 1.2 ([6]) The KP-I equation (1.5) is globally well-posed in Z2(R⇥ T).

The result of Theorem 1.2 applies equally well for the KP-I equation posed on
R ⇥ TL, where TL = R/(2⇡LZ) with an obvious modification of the spaces Zs . The
proof of Theorem 1.2 is based on an application of the idea introduced by Koch
and the author in [11] to study low regularity well-posedness of quasilinear disper-
sive PDE’s, combined with the three conservation laws described above. As usual

1. If u is a solution of (1.4) then so is u�(t, x,y) = �2u(�3t,�x,�2y) for every � > 0.
2. As described in [31].
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by global well-posedness we mean the existence, the uniqueness, the persistence of
higher regularity and the continuous dependence with respect to the time and to the
initial data. Therefore the KP-I equation becomes a well-defined dynamical system
on Z2(R⇥ T). We shall study the stability of the KdV solitary waves as solutions of
the KP-I equation in the context of this dynamics. We first state the instability result.

Theorem 1.3 ([23]) The KdV solitary wave Sc(t, x) is orbitally unstable as a solution
of the KP-I equation (1.5), provided c > 4/

p
3. More precisely, for every s � 0 there

exists ⌘ > 0 such that for every � > 0 there exists u�0 2 Z2\Hs and a time T� ⇡ | log�|
such that

�

�u�0(x,y)� Sc(0, x)
�

�

Hs(R⇥T) +
�

�u�0(x,y)� Sc(0, x)
�

�

Z2(R⇥T) < �

and the (global) solution of the KP-I equation, defined by Theorem 1.2 with datum u�0
satisfies

inf
a2R

�

�u(T�, x � a,y)� Sc(T�, x)
�

�

L2(R⇥T) > ⌘.

The approach used in the proof of Theorem 1.3 has its origin in the work of Gre-
nier [5]. The proof of Theorem 1.3 could be obtained (at least for some values of c)
by using the construction of explicit solutions of the KP-I equation, based on inverse
scattering methods, performed in the remarkable work by Zakharov [30]. The advan-
tage of the approach of [23] is that it is quite flexible and can be adapted to more
general non-integrable settings. As we shall see below the approach of [23] applies to
the water-waves system (see also [24] for applications to many other dispersive mod-
els). Thanks to a reversibility property of the KP-I equation the result of Theorem 1.3
also holds for negative times.

Using the above mentioned scale invariance of the KP equations we can restate the
result of Theorem 1.3 for a fixed speed but allowing only sufficiently small periods,
i.e., only considering perturbations of period 2⇡L for L small enough (in the context
of (1.5) posed on R ⇥ R/(2⇡LZ)). More generally, when studying the transverse sta-
bility of the KdV solitary waves under the KP flows it is equivalent to consider fixed
period perturbations and vary the speed or fixing the speed and varying the periods
of the transverse perturbations (such a property however does not seem to hold for
the water-waves system).

The result of Theorem 1.3 only applies for large speed solitary waves. It is there-
fore natural to ask what happens for smaller speed solitary waves. The following
statement gives an almost complete answer to this question.

Theorem 1.4 ([27]) The KdV solitary wave Sc(t, x) is orbitally stable as a solution
of the KP-I equation (1.5), provided c < 4/

p
3. More precisely, for every " > 0, there

exists � > 0 such that if the initial datum u0 of the KP-I equation (1.5) satisfies u0 2
Z2(R⇥ T) and

�

�u0(x,y)� Sc(0, x)
�

�

Z1(R⇥T) < �

then the solution of the KP-I equation, defined by Theorem 1.2 with datum u0 satisfies

sup
t2R

inf
a2R

�

�u(t,x � a,y)� Sc(t, x)
�

�

Z1(R⇥T) < ".
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The study of the critical speed (c = 4/
p

3) solitary waves is a delicate open prob-
lem.

Let us now turn to the KP-II equation

@x
�

@tu+u@xu+ @3
xu
�

+ @2
yu = 0, x 2 R, y 2 T. (1.7)

In the case of the KP-II equation the only useful conservation law from [31] is the
L2 norm. This makes the global well-posedness problem for the KP-II equation quite
difficult. The global well-posedness in L2 of the KP-II equation, posed on T2 and R2

was obtained in the remarkable work by Bourgain [4]. It was shown in [19] that the
approach of Bourgain can also be applied in the context of the KP-II equation posed
on R⇥ T. More precisely, we have the following statement.

Theorem 1.5 ([19]) The KP-II equation (1.7) is globally well-posed in L2(R⇥ T).

Therefore the KP-II equation becomes a well-defined dynamical system on L2(R⇥
T) and again, we shall study the stability of the KdV solitary waves as solutions of
the KP-II equation in the context of this dynamics. As predicted in [8], it turns out
that the KdV solitary waves are stable as solutions of the KP-II equation for all speeds
c > 0. Here is the precise statement.

Theorem 1.6 ([17]) The KdV solitary wave Sc(t, x) is orbitally stable as a solution of
the KP-II equation (1.7) for all c > 0. More precisely, for every " > 0, there exists � > 0
such that if the initial datum u0 of the KP-II equation (1.7) satisfies

�

�u0(x,y)� Sc(0, x)
�

�

L2(R⇥T) < �

then the solution of the KP-II equation, defined by Theorem 1.5 with datum u0 satisfies

sup
t2R

inf
a2R

�

�u(t,x � a,y)� Sc(t, x)
�

�

L2(R⇥T) < ".

Moreover, there is also an asymptotic stability in the following sense. There exists a
constant c̃ satisfying c̃ � c = O(�) and a modulation parameter x(t) satisfying

lim
t!1

ẋ(t) = c̃

and such that

lim
t!1

�

�u(t,x,y)� Sc̃(0, x � x(t))
�

�

L2((x�ct/2)⇥Ty) = 0.

The approach used in the proof of Theorem 1.6 is inspired by the work by Merle–
Vega [13] where one obtains an asymptotic stability result for the KdV equation
under L2 perturbations. Let us observe that Theorem 1.6 contains the Merle-Vega re-
sult as a very particular case (when u0(x,y) is y independent). Observe that because
of the lack of useful higher order conserved quantities the L2 distance is the only
one where one may expect to measure the stability phenomenon for KP-II. For the
KdV equation there are higher order conservation laws providing controls on higher
Sobolev norms and thus one can have stability statements in much stronger than L2

topologies. We refer to Section 4 for further details on the proof of Theorem 1.6.
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2 Extensions to the water-waves system

We are now going to discuss how much, at the present moment, the results presented
in the previous section can be extended to the case of the water-waves system (which
is at the origin of the derivation of the KdV and the KP models).

2.1 Solitary waves for the water-waves system

The first natural question is whether the water-waves system has solitary waves of
type (1.2). The answer of this question is a priori not clear at all but it was shown
in the remarkable work by Amick–Kirchgässner [2] that the full water-waves system
still has one dimensional solitary waves of type (1.2). In order to present the result
of [2], we introduce the water-waves system. The water-waves system describes the
evolution of an irrotational fluid motion in the presence of a free surface. We sup-
pose that the bottom is finite and flat. When we study solitary waves of speed c,
after some elementary reductions, we obtain that the water-waves system reads

@t⌘ = @x⌘+G[⌘]', (2.1)

@t' = @x' �
1
2
|r'|2 + 1

2

�

G[⌘]' +r' ·r⌘
�2

1+ |r⌘|2 �↵⌘+ �r · r⌘
q

1+ |r⌘|2
, (2.2)

where ⌘ = ⌘(t, x,y), ' ='(t, x,y), t, x,y 2 R, r = (@x, @y) and

↵ = gh
c2 , � = b

hc2 .

Here g is the gravity constant, b takes into account the surface tension effects, h
represents the deepness of the fluid domain and G[⌘] is a Dirichlet-Neumann map.
By definition

�

G[⌘]'
�

(x,y) = @z�
�

x,y,⌘(x,y)
�

�r⌘(x,y) ·r�
�

x,y,⌘(x,y)
�

,

where (for k⌘kL1 ⌧ 1) the function � = �(x,y, z) is the (well-defined) solution of
the elliptic boundary value problem

�

@2
x + @2

y + @2
z
�

� = 0, in
�

(x,y, z) 2 R3 : �1 < z < ⌘(x,y)
 

,

�
�

x,y,⌘(x,y)
�

='(x,y), @z�(x,y,�1) = 0, (x,y) 2 R2.

One may show that the map G[⌘] is a first order pseudo-differential operator with
principal symbol ((1+ |r⌘|2)|⇠|2 � (r⌘ · ⇠)2) 1

2 , ⇠ 2 R2.
In the context of the water-waves system a solitary wave of speed c is an indepen-

dent of t and y solution of the system (2.1)-(2.2). We now can state the result of
Amick–Kirchgässner.
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Theorem 2.1 ([2]) Suppose that ↵ = 1+"2 and � > 1/3. Then there exists "0 such that
for every " 2 (0, "0) there is a stationary solution (⌘"(x),'"(x)) of the water-waves
problem of the form

⌘"(x) = "2⇥("x, "), '"(x) = "�("x, "),

where there exists d > 0 such that ⇥ and � satisfy

8↵ � 0, 9C↵ > 0, 8 (x, ") 2 R⇥ (0, "0),
�

�(@↵x⇥)(x, ")
�

�  C↵e�d|x|

and

8↵ � 1, 9C↵ > 0, 8 (x, ") 2 R⇥ (0, "0),
�

�(@↵x�)(x, ")
�

�  C↵e�d|x| .

Observe that the solitary waves established by the above result are of speed essen-
tially

p

gh.

2.2 Stability with respect to 1d perturbations

A large part of the result of Benjamin has an analogue in the context of the water-
waves system. More preciseley, thanks to a work by Mielke [14], the solitary wave of
Amick–Kirchgässner is orbitally stable by 1d perturbations, as far as the local solu-
tion exists, i.e., the stability holds under an assumption on the global well-posedness
of the Cauchy problem. More precisely, under the last hypothesis, for every  > 0
there exists � > 0 such that if the initial data is independent of y and is � close to
the solitary wave in the energy space associated with the water-waves system, then
the corresponding solution is  closed to a suitable (depending on the time) spatial
translate of the solitary wave, again in the energy space.

2.3 Transverse instability of the solitary water-waves

In this section we consider (2.1)–(2.2) posed on R ⇥ TL, where TL = R/(2⇡LZ), i.e.
we will study solutions of the water-waves system (2.1)–(2.2) which are localised in
x and periodic in y with a suitable period. It turns out that in such a functional
setting the solitary-waves of Amick–Kirchgässner can be destabilised if they are per-
turbed by transverse perturbations with a sufficiently large period. Here is a precise
statement.

Theorem 2.2 (follows from [25] and [27]) Suppose that ↵ = 1 + "2 and � > 1/3.
There exists "0 such that for every " 2 (0, "0) there is L0 > 0 such that for L > L0

the following holds true. For every s � 0, there exists  > 0 such that for every � > 0,
there exist (⌘�0(x,y),'

�
0(x,y)) and a time T� ⇠ | log�| such that

�

�

�

⌘�0(x,y),'
�
0(x,y)

�

�
�

⌘"(x),'"(x)
�

�

�

Hs(R⇥TL)⇥Hs(R⇥TL)  �

and a solution (⌘�(t, x,y),'�(t, x,y)) of the water-waves system (2.1)–(2.2) posed
on R⇥ TL with initial datum (⌘�0 ,'

�
0), defined on [0, T�] and satisfying

inf
a2R

�

�

�

⌘�(T�, x,y),'�(T�, x,y)
�

�
�

⌘"(x � a),'"(x � a)
�

�

�

L2(R⇥TL)⇥L2(R⇥TL) > .



626 Nikolay Tzvetkov

In the case � > 1/3 (strong surface tension) the asymptotic model obtained from
the water-waves system in the scaling of Theorem 2.1 is the KP-I equation. Therefore
Theorem 2.2 can be seen as an analogue of Theorem 1.3 for the water-waves. The
existence of the solution in Theorem 2.2 is a nontrivial part of the statement. The
proof of Theorem 2.2 follows by the considerations in [25] combined with the linear
stability analysis performed in [27] (recalled in details in the next section in the
context of the KP-I equation). The main reason for which we succeeded to extend
the proof of Theorem 1.3 to the case of the water-waves is that we found a flexible
approach mainly based on the Hamiltonian structure and soft spectral properties.
These spectral properties are soft enough so that we can deduce them from the
corresponding properties of the KdV equation. In other words the only place in the
proof of Theorem 2.2 where purely KdV properties are really used is the analysis
of the linearisation of the water-waves Hamiltonian about the Amick–Kirchgässner
solitary wave. The spectral analysis of this linearisation is done in a perturbative
way with respect to the corresponding KdV linearisation of the Hamiltonian about
the solitary wave.

The proof of Theorem 2.2 is technically quite involved and giving a more detailed
presentation on it would go beyond the scope of this exposé.

3 On the proof of the results for KP-I

We first discuss the instability result of Theorem 1.3. We will choose the speed c = 1
and we will vary the period, i.e., we shall study (1.5), posed on R⇥TL, where TL = R/
(2⇡LZ) and the issue will be to prove the instability of Q(x�t) as a solution of (1.5)
for L large enough. After a change of frame Q(x) becomes a stationary solution of

@x
�

@tu+u@xu+ @3
xu� @xu

�

� @2
yu = 0 (3.1)

and the issue is to study the stability of Q(x) as a solution of (3.1), posed on R⇥TL.
Linearising (3.1) about Q leads to

@x
�

@tu+ @x(Qu)+ @3
xu� @xu

�

� @2
yu = 0

which can be written in a Hamiltonian form as follows

@tu = J⇤u, J = @x, ⇤ = �@2
x + 1+ @�2

x @2
y �Q.

In order to detect linear instable modes, we look for solutions of the last equation
of the form

u(t,x,y) = e� teikyv(x)
which leads to the eigenvalue problem

�v = J⇤(k)v, ⇤(k) = �@2
x + 1� k2@�2

x �Q. (3.2)
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The operator ⇤(0) is the linearisation about Q of the KdV Hamiltonian and its spec-
trum is well-understood by the Sturm-Liouville theory. It turns out that ⇤(0) has one
simple negative eigenvalue, zero as a simple eigenvalue and the remaining part of
the spectrum is included in [↵,1) for some ↵ > 0. The difficulty of the eigenvalue
problem (3.2) is that the operator J⇤(k) is not symmetric and thus more difficult to
analyse. We can however reduce the analyses to a symmetric operator if we look for
v under the form v = Jw (= @xw). Thus we are reduced to the eigenvalue problem

� �Jw = M(k)w, M(k) = �J
�

� @2
x + 1� k2@�2

x �Q
�

J. (3.3)

Observe thatM(k) is not only symmetric but it also does not contain anti-derivatives.
By analysing the corresponding quadratic form we obtain that the structure of the
spectrum of M(0) is similar to the one concerning ⇤(0) described above. We next
observe that M(k) is increasing in k which makes that the spectrum of M(k) shifts
to the right when k is increasing. Therefore there exists a k0 > 0 such that M(k0) is
nonnegative and has a one-dimensional kernel (see [26] for more details). Moreover,
since M0(k) is positive, we get that there exists a unique k0 î 0 such that M(k0)
has a non-trivial kernel. Next, using the implicit function Theorem we have that for
every � real and close to zero, there exists k(�), w(�) depending smoothly on � ,
and solutions of (3.3) such that k(0) = k0 and w(�) = � +W(�), W(0) = 0, with �
an element of the kernel of M(k0) and

�

W(�),�
�

= 0, k�kL2(R) = 1. (3.4)

By taking the derivative of (3.3) with respect to � , we first obtain

�J� = k0(0)M0(k0)� +M(k0)W 0(0).

Consequently, by taking the scalar product with �, we get

k0(0) = 0, M(k0)W 0(0) = �J�. (3.5)

Next, we can compute the second derivative. This yields

�2JW 0(0) = k00(0)M0(k0)� +M(k0)W 00(0)

and hence by using (3.5), we obtain that

k00(0) = �2

�

JW 0(0),�
�

�

M0(k0)�,�
� = 2

�

W 0(0), J�
�

�

M0(k0)�,�
� = �2

�

M(k0)W 0(0),W 0(0)
�

�

M0(k0)�,�
� < 0.

Indeed, the numerator is positive by using that M(k0) is positive on the orthogonal
of � and that W 0(0) is orthogonal to � thanks to (3.4). This proves that for � close
to zero, we have

k(�) = k0 � �2 + · · ·
with  > 0 and hence that the instability occurs for k < k0. Moreover, by using an
argument of Pego–Weinstein (see [21]), since M(k) has at most one negative eigen-
value, we know that there exists at most one solution of (3.3) with � of positive
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real part (and thus that � is necessarily real). Consequently we get that there exists
a continuous curve �(k) describing solutions of (3.3) with � = �(k) defined on a
maximal interval (K⇤, k0) for k such that �(k) > 0 for every k in this interval. We
claim that K⇤ = 0. Indeed, if K⇤ > 0 since � remains bounded (see [24]) the only
possibility is that limk!K⇤ �(k) = 0. But this implies that M(K⇤) has a non-trivial
kernel which is a contradiction with the uniqueness of k0. Consequently, we get that
there is a nontrivial solution of (3.3) with � > 0 for every k 2 (0, k0). This in turn
implies that the KP-I equation posed on R ⇥ TL has linear instable modes as far as
L > 1/k0.

Remark 3.1 In the case of the KP-I equation the previous reasoning can be avoided
by performing the ODE analysis of [1]. This ODE analysis also determines the exact
value of the critical speed (or period). The argument, we have just presented has
the advantage to be very flexible and in particular it applies equally well to the
water-waves system. This explains why in Theorem 2.2 we can destabilise the solitary
water-waves with transverse perturbations of any sufficiently large period. The exact
value of k0 in the context of the water-waves system is however not clear to us.

We now turn to the nonlinear part of the proof of Theorem 1.3. We look for a
solution of the KP-I equation

@x
�

@tu+u@xu+ @3
xu� @xu

�

� @2
yu = 0,

posed on R⇥ TL under the form

u(t) = uap(t)+ v(t), t � 0, (3.6)

with

uap(t) =
M
X

k=0

�kuk(t),

where |�| ⌧ 1, M � 1 and uk(t) are defined iteratively as we explain below. We
put uap in the KP-I equation and we develop in terms of the powers of �. Clearly
u0 should solve the KP-I equation. We set u0 ⌘ Q. The second term should solve
@tu1 = J⇤u1. We look for u1 under the form

u1(t) = e� t'(x,y) , � > 0. (3.7)

Therefore ' should solve
J⇤' = �', � > 0. (3.8)

We now analyse solutions of (3.8) under the form

'(x,y) = ei
n0y
L  (x) (3.9)

for some integer n0 î 0 with a real valued  2 \sHs(R). We already know that if
L > 1/k0 there is a solution with n0 = 1. Moreover, it can be shown that for |n0|� 1
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there is no solution of (3.8) of the form (3.9) (see [24]). We also can show that for
each n0 there cannot be more than one � such that (3.8)–(3.9) hold. Therefore there
is n0 and � such that (3.8)–(3.9) holds and � is the largest possible (there is a finite
number of choices for � and thus there is a maximal one). We call �0 the maximal
� and we define u1 as

u1(t) ⌘ e�0tei
n0y
L  (x)+ e�0te�i

n0y
L  (x) ,

where n0 is the value of the corresponding transverse frequency. Moreover, thanks
to [1], we know that  (x) = @2

xV(x), where V 2 \sHs(R). This is of importance in
order to get that the initial perturbation belongs to Z2.

Next, for k � 2, uk(t) is defined as a solution of the linear problem

@tuk � J⇤uk +
1
2
@x

0

@

k�1
X

j=1

ujuk�j

1

A = 0, uk(0) = 0 .

Using some delicate semi-group estimates, we obtain the natural bounds

kuk(t)kHs(R⇥R/(2⇡LZ))  Ck,sek�0t . (3.10)

Now, we set

T� ⌘ log(/�)
�0

,

where  ⌧ 1 is a small positive parameter, independent of �, to be chosen in the
sequel. As a consequence of (3.10), we get

�

�R(t)
�

�

Hs(R⇥R/(2⇡LZ))  CM,s�M+1e(M+1)�0t , t 2 [0, T�], (3.11)

where

R ⌘
�

@t + @3
x � @x � @�1

x @2
y
�

uap +
1
2
@x(u2

ap) .

Coming back to (3.6), we obtain that v(t) should solve the problem

�

@t + @3
x � @x � @�1

x @2
y
�

v + @x(uapv)+ v@xv + R = 0, v(0) = 0. (3.12)

We multiply (3.12) with v and we integrate over R⇥R/(2⇡LZ). Using integration by
parts, we easily get the estimate

d
dt
kv(t)k2

L2 
�

1+ k@xuap(t)kL1
�

kv(t)k2
L2 + kR(t)k2

L2 . (3.13)

Using (3.10), (3.11) and the Sobolev embedding, we get

k@xuap(t)kL1  kQ0kL1 +
M
X

k=1

Ck,2�kek�0t , kR(t)k2
L2  CM�2(M+1)e2(M+1)�0t .
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Coming back to (3.13), we infer that for t 2 [0, T�],

d
dt
kv(t)k2

L2  (D + ⇤M)kv(t)k2
L2 + CM�2(M+1)e2(M+1)�0t ,

where D = 1 + kQ0kL1 and ⇤M,CM are two positive constants depending of M but
independent of  and t. Integrating the last bound, we get

d
dt

⇣

e�(D+⇤M)tkv(t)k2
L2

⌘

 CM�2(M+1)e2(M+1)�0t�Dt�⇤Mt , t 2 [0, T�]. (3.14)

We now choose M large enough and  small enough so that

2(M + 1)�0 > D + ⇤M . (3.15)

This fixes the value of M while  will be subject to several more smallness restric-
tions. Thanks to (3.15) we can integrate (3.14) and get the key bound

kv(t)kL2  CMM+1 , t 2 [0, T�]. (3.16)

We next provide a suitable lower bound for uap . Let us denote by ⇧ the projector
on the nonzero y frequencies. Then for every a 2 R, ⇧(Q(x � a)) = 0 and by the
definition of u1 there is c > 0 such that �k⇧u1(T�)kL2 � c. Using (3.10), we get

�

�⇧uap(T�)
�

�

L2 � c
2
, (3.17)

provided  is small enough. Combining (3.16) and (3.17), we get the bound

�

�u(T�)�Q(x � a)
�

�

L2 �
�

�⇧(uap(T�)+ v(T�)�Q(x � a))
�

�

L2 � c
4
,

provided  is small enough which implies the instability statement of Theorem 1.3.
We next discuss the stability result of Theorem 1.4. We need to study the stability

of Qc(x) = cQ(
p
cx) as a solution of

@tv � c@xv + v@xv + @3
xv � @�1

x @2
yv = 0, x 2 R, y 2 T. (3.18)

Consider the energy (Hamiltonian) associated with (3.18)

H(v) =
ˆ 1

�1

ˆ 2⇡

0

h

(@xv)2 + (@�1
x @yv)2 + cv2 � 1

3
v3
i

dxdy.

The quantity H(v) is invariant under the flow of (3.18). Using that Qc is a critical
point of H, we can write the expansion

H(Qc +w) = H(Qc)+ Bc(w,w)�
1
3

ˆ 1

�1

ˆ 2⇡

0
w3dxdy,

where

Bc(w,w) ⌘ 2
ˆ 1

�1

ˆ 2⇡

0

h

(@xw)2 + (@�1
x @yw)2 + cw2 �Qcw2

i

dxdy.
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Next, we define the bilinear forms

Bck(f1, f2) ⌘ 2
ˆ 1

�1

h

f 01f
0
2 + k2(@�1

x f1)(@�1
x f2)+ cf1f2 �Qcf1f2

i

dx.

We have the following bound for Bc0.

Lemma 3.2 There exists C > 0 such that for every c > 0, every g 2 H1(R) satisfying
ˆ 1

�1
g(x)Qc(x)dx =

ˆ 1

�1
g(x)Q0c(x)dx = 0

one has
Bc0(g, g) � C

�

kg0k2
L2 + ckgk2

L2

�

.

The proof of Lemma 3.2 follows from the KdV stability theory. The next lemma is
the key point in the analysis.

Lemma 3.3 Let c < 4/
p

3. There exists C > 0 such that for every k 2 Z? and every
f 2 H1(R) such that @�1

x f 2 L2(R), we have the estimate

Bck(f , f ) � C
�

kfk2
H1 + k2k@�1

x fk2
L2

�

.

The proof of Lemma 3.3 relies on a refined spectral analysis of the operator ⇤(k),
defined above. Note that we do not impose any orthogonality condition in Lemma 3.3.
With Lemma 3.2 and Lemma 3.3 in hand we classically complete the stability proof.
More precisely, using the implicit function Theorem, we obtain that if the initial data
is close to Qc in Z1 then there exists a modulation parameter �(t), defined at least
for small times, so that

v(t, x + �(t),y) = Qc(x)+w(t,x,y)

with ˆ 1

�1

ˆ 2⇡

0
w(t,x,y)Q0c(x)dxdy = 0.

Recall the conservation law

H(v(t)) = H(v(0)) = H(Qc +w(0)),

where w(0) is small in Z1. On the other hand

H
�

v(t)
�

= H
�

Qc +w(t)
�

= H(Qc)+ Bc
�

w(t),w(t)
�

� 1
2

ˆ 1

�1

ˆ 2⇡

0
w3(t, x,y)dxdy.

Next, we can write

Bc
�

w(t),w(t)
�

= Bc0(ŵ(t, ·,0), ŵ(t, ·,0))+
X

k2Z?
Bck(ŵ(t, ·, k), ŵ(t, ·, k)),
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where here we use the notation

ŵ(t, x, k) = (2⇡)�1
ˆ 2⇡

0
e�ikyw(t,x,y)dy,

for the partial Fourier transform of w with respect to the periodic variable y . Now,
by invoking Lemma 3.2 and Lemma 3.3, we can complete the stability proof. We refer
to [27] for the details.

4 On the proof of the results for KP-II

A crucial role in the proof of Theorem 1.6 is played by the Miura transforms which
are defined as follows. For c > 0, we set

Mc
±(v) = ±@xv + @�1

x @yv � v2 + c
2
,

where v 2 Z1(R⇥ T). If a sequence {vn} converges to a limit v in Z1 the sequence
{Mc

±(vn)�Mc
±(v)} converges to 0 in L2(R⇥ T). The key algebraic fact is that if v is

a solution of the mKP-II equation

@tv + @3
xv + 3@�1

x @2
yv � 6v2@xv + 6@xv@�1

x @yv = 0

then for c > 0, u± defined by

u±(t, x,y) ⌘ Mc
±(v)(t, x � 3ct,y)

are solutions of the KP-II equation

@x(@tu+ @3
xu+ 3@x(u2))+ 3@2

yu = 0. (4.1)

We can of course perform the stability analysis in the context of the equation (4.1)
and then by a simple scaling this implies the stability statement for (1.7) claimed in
Theorem 1.6. Consider the kink Qc defined by

Qc(x) =
r

c
2

tanh
�

r

c
2
x
�

.

We have that Qc(x + ct) is a solution of the mKP-II equation and

Mc
+(Qc) ='c, Mc

�(Qc) = 0,

where

'c(x) ⌘ c cosh�2 �
r

c
2
x
�

, c > 0

('c(x � 2ct) is a solution of (4.1)). We next turn to the Cauchy problem for the
mKP-II equation for data close to the kink solution. Set

Y ⌘
�

u 2 H8(R⇥ T) : @�1
x @yu 2 H8(R⇥ T)

 

.
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We need a global well-posedness result for the mKP-II equation with data

v(0, x,y) = Qc(x)+w0(x,y), w0 2 Y . (4.2)

It turns out that one can apply arguments similar to the work by Kenig and Martel
[9] to get the following result.

Proposition 4.1 For every w0 2 Y , there exists a unique global in time solution of the
mKP-II equation with data (4.2) such that

v(t, x,y) = Qc(x + ct)+w(t,x,y), w 2 C(R;Y) .

We observe that we need the global well-posedness only for regular initial data,
the L2 statement of Theorem 1.6 requires some classical approximation arguments.

Let us now briefly discuss the proof of Proposition 4.1. We need to solve the equa-
tion

@tw+@3
xw+3@�1

x @2
yw�2@x

�

(w+Q̃c)3�Q̃3
c
�

+6@xw@�1
x @yw+6Q̃0c@�1

x @yw = 0 (4.3)

with data w(0, x,y) = w0(x,y), w0 2 Y , where Q̃c ⌘ Qc(x + ct). It turns out that
establishing an L2 bound for the solutions of (4.3) is a quite delicate task relying on
the monotonicity of the kink. Suppose that w is a solution of (4.3) on a time interval
[0, T ). Define u by u = Mc

+(Q̃c +w)(t, x � 3ct,y). Then u solves the KP-II equation
and by the analysis of [19] we know that for every s 2 [1,6] there exists Cs <1 such
that

sup
t2[0,T )

ku(t, ·)kHs(Rx⇥Ty)  Cs.

We need to show that there exists C <1 such that

sup
t2[0,T )

kw(t, ·)kL2  C .

Once the crucial L2 bound is established, one can also get bounds for higher deriva-
tives. These controls in turn ensure that the local in time analysis of [9] can be
suitably iterated in order to get global in time solutions. We have that

Mc
+(Q̃c +w) ='c(x + ct)+ @xw + @�1

x @yw �w2 � 2Q̃cw .

Thus
sup
t2[0,T )

k@xw + @�1
x @yw �w2 � 2Q̃cwkL2  C . (4.4)

Combining the fact that (@xw, @�1
x @yw) = 0, (@xw,w2) = 0 and

�2(@xw, Q̃cw) =
ˆ
Rx⇥Ty

Q0c(x + ct)w2(x,y)dxdy > 0,

with (4.4), we get

sup
t2[0,T )

k@xwkL2 + sup
t2[0,T )

k@�1
x @yw �w2 � 2Q̃cwkL2  C . (4.5)
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At that point, we invoke the following Sobolev type inequality

kukL6(R⇥T)  Ck@xuk
1
3
L2(R⇥T)

✓

kuk
2
3
L2(R⇥T) + k@xuk

1
3
L2(R⇥T)k@�1

x @yuk
1
3
L2(R⇥T)

◆

. (4.6)

Observe that if u is y independent, the inequality (4.6) becomes

kukL6(R)  Ck@xuk
1
3
L2(R)kuk

2
3
L2(R)

which is a direct consequence of the classical bound kfk2
L1  Ckf 0kL2kfkL2 . Using

(4.6) and the bound for k@xwkL2 , we get

k@�1
x @ywkL2  C(1+ kwk2

L4 + kwkL2)  C(1+ kwk
1
2
L2k@�1

x @ywk
1
2
L2 + kwk2

L2)

which in turn implies that for t 2 [0, T ),

k@�1
x @ywkL2  C

�

1+ kwk2
L2

�

. (4.7)

We next multiply (4.3) by w and integrate over R⇥ T to get the identity

1
2
d
dt
kwk2

L2 = 6
ˆ
R⇥T

Q̃c @xw @�1
x @yw + 6

ˆ
R⇥T

Q̃cQ̃0cw2 + 2
ˆ
R⇥T

Q̃0cw3.

Using (4.6), (4.5) and (4.7), we obtain

�

�

�

ˆ
R⇥T

Q̃0cw3
�

�

�  kQ̃0ckL2(R⇥T)kwk3
L6  C

�

kwk2
L2 + k@�1

x @ywkL2
�

 C
�

1+ kwk2
L2

�

.

Using the last estimate and (4.7), we get

d
dt
kwk2

L2  C
�

kwk2
L2 + 1

�

which implies the crucial L2 control on the solutions of (4.3).
The next key lemma allows to transform the stability problem of the KdV soliton

under the KP-II flow to the stability of the kink under the mKP-II flow.

Lemma 4.2 For every " > 0, there exists a � > 0 such that if kukL2 < �, there exists a
unique (k, v) 2 R⇥ Z1(R⇥ T) satisfying

|k� c| < ", kvkZ1(R⇥T) < ", Mk
+(Qk + v) ='c +u.

Moreover, the map u, (k, v) is of class C1 from L2(R⇥ T) to R⇥ Z1(R⇥ T).

An important point of the analysis is the identification of the kernel of the map
Lc ⌘ �@x + @�1

x @y � 2Qc(x) which is the linearisation of Mc
� about Qc . Consider the

case c = 2 and Q = Q2. Suppose u is in the kernel of Lc . Then it is a solution to a
heat equation

uy = (ux + 2Qu)x, (4.8)
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and 2⇡ -periodic in y . A direct computation shows that (4.8) has the y-independent
solutions {↵Q0(x) |↵ 2 R}. The key observation is that (4.8) has no other solutions
in Z1. Indeed, let us set

V(y) =
ˆ
R

 

1
2
u2
x(x,y)�

�

Q0(x)� 2Q2(x)
�

u2(x,y)
!

dx.

If u 2 Z1 is a solution of (4.8) then

V 0(y) = �
ˆ
R

⇣

u2
y(x,y)+Q0(x)

�

ux(x,y)+ 2Q(x)u(x,y)
�2
⌘

dx.

Integrating the last identity over T yields uy = ux+2Qu = 0. Thus u is independent
of y and by solving the ODE ux + 2Qu = 0, we obtain that the studied kernel is
spanned by Q0.

We now turn to the stability of the kink under the mKP-II flow. We have the follow-
ing statement.

Proposition 4.3 For every " > 0, there exists a � > 0 such that if the initial data

v(0, x,y) = Qc(x)+w0(x,y), w0 2 Y

of the mKP-II equation satisfies kw0kZ1(R⇥T) < � then there exists a continuous func-
tion �(t) such that for every t 2 R, the corresponding solution of the mKP-II equation
satisfies

�

�v(t, x,y)�Qc
�

x + �(t)
�

�

�

Z1(R⇥T) < ".

The proof of Proposition 4.3 can be completed by the arguments described in the
end of the previous section once we establish the following bound

kLcwkL2(R⇥T) � CkwkZ1 , 8w 2 ('c)? , (4.9)

which is a quite natural statement in view of the analysis of the kernel of Lc , per-
formed above.

Let us now give the proof of Proposition 4.3, assuming (4.9). Write

v(t, x,y) = Qc
�

x + �(t)
�

+w(t,x,y),

under the orthogonality condition
⇣

w(t,x,y),Q0c
�

x + �(t)
�

⌘

=
⇣

w(t,x,y),'c
�

x + �(t)
�

⌘

= 0.

Set
Lc,�(t) ⌘ �@x + @�1

x @y � 2Qc
�

x + �(t)
�

.

Recalling that Mc
�(Qc) = 0, we get

�

�Mc
�
�

Qc(x + �(t))+w(t,x,y)
�

�

�

2
L2(R⇥T)

=
ˆ
R⇥T

�

Lc,�(t)w �w2�2dxdy

=
ˆ
R⇥T

�

Lc,�(t)w
�2dxdy +

ˆ
R⇥T

(w4 � 2w2Lc,�(t)w)dxdy.
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Thanks to the orthogonality condition, we see that w(t,x � �(t),y) is orthogonal
in L2(R⇥ T) to 'c(x). Therefore, using the key property (4.9), we obtain that there
exists a positive constant ⌫ , independent of t and w such that

ˆ
R⇥T

�

Lc,�(t)w
�2dxdy =

ˆ
R⇥T

(Lc
⇣

w
�

t, x � �(t),y
�

⌘2
dxdy � ⌫kwk2

Z1(R⇥T) .

Next we invoke (4.6) to get

kukL2(R⇥T) + kukL6(R⇥T)  CkukZ1(R⇥T)

and to arrive at

�

�Mc
�(v)(t, x,y)

�

�

2
L2(R⇥T) �

⌫
2
kw(t, ·)k2

Z1 � Ckw(t, ·)k3
Z1 .

Thanks to the conservation law of the mKP-II flow, we have

�

�Mc
�(v)(t, x,y)

�

�

2
L2(R⇥T) =

�

�Mc
�
�

Qc(x)+w0(x,y)
�

�

�

2
L2(R⇥T) .

Now expanding the square of the L2 norm of Mc
�(Qc(x)+w0(x,y)) and using (4.6),

we have
�

�Mc
�
�

Qc(x)+w0(x,y)
�

�

�

2
L2(R⇥T)  C

�

kw0k2
Z1 + kw0k4

Z1

�

.

Combining the previous estimates, we get kw(t, ·)kZ1  Ckw0kZ1 provided � ⌧ 1.
This completes the proof of Proposition 4.3.

The asymptotic stability statement in Theorem 1.6 is based on a use of the fun-
damental Kato smoothing identity. More precisely, if u(t) 2 C(R;H8(Rx ⇥ Ty)) is a
solution of the KP-II equation and �(x) 2 C3 then

d
dt

ˆ
R⇥T

u2� =
ˆ
R⇥T

�

� 3(@xu)2 � 3(@�1
x @yu)2 � 4u3��0 +

ˆ
R⇥T

u2�000. (4.10)

The identity (4.10) implies that small solutions of the the KP-II equation locally tend
to 0 as t !1. Finally, thanks to the property Mc

�(Qc) = 0 we can reduce the asymp-
totic stability close the KdV solitary waves to the asymptotic stability close to zero.
We refer to [17] for the details.

5 Related results and open problems

In the context of the transverse stability of the KdV solitary waves as solutions of
the KP-II equation a natural question is whether one may consider fully localised per-
turbations. The global KP-II dynamics for fully localised perturbations is obtained in
[19]. In view of the result of [19] one can expect to study the stability phenomenon
only locally in space which is the natural counterpart of Theorem 1.6 for fully lo-
calised perturbations. In the case of fully localised perturbations new arguments are
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needed in order to deal with the zero y frequency. We refer to [28] and especially to
[16] for more details on this issue.

Let us also mention that the approach of Theorem 2.2 was also used in [15] in
order to construct asymptotic mutli-solitons for the water-waves system.

Let us finally mention some open problems related to the results presented here.

1. As already mentioned the transverse stability analysis of the critical speed KdV
solitary wave is a delicate problem. The same problem appears in the context
of the large family of dispersive models considered in [24]. We believe that in
this context the Zakharov-Kuznetsov equation is the most accessible for critical
speed transverse stability analysis (see [29] for related results in the context of
the nonlinear Schrödinger equation).

2. We believe that it is possible to extend the result of [6] to global well-posedness
in Z1 (see [7, 32]). This would relax the assumption on the perturbation in Theo-
rem 1.4.

3. It would also be very interesting to study the asymptotic stability in the context
of Theorem 1.4.

4. We believe that the result of Theorem 1.4 can be extended to a conditional small
period stability for the water-waves system (in the spirit of the work by Mielke).

5. We also believe that we can have an unconditional statement in Mielke’s analysis
for finite but long time scales, depending on the size of the initial perturbation.

6. It would be very interesting to get stability results for the water-waves system in
the KP-II regime. For instance, one may try to extend the quite flexible approach
of Pego-Weinstein [22] to the case of the water-waves. A first step in this direction
is done in [20].
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